CERN in the context of Victor Weisskopf


CERN in the context of Victor Weisskopf

CERN Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about CERN in the context of "Victor Weisskopf"


⭐ Core Definition: CERN

The European Organization for Nuclear Research, known as CERN (/sɜːrn/; French pronunciation: [sɛʁn]; Organisation européenne pour la recherche nucléaire), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, a western suburb of Geneva, on the France–Switzerland border. It comprises 24 member states. Israel, admitted in 2013, is the only full member geographically out of Europe. CERN is an official United Nations General Assembly observer.

The acronym CERN is also used to refer to the laboratory; in 2024, it had 2,704 scientific, technical, and administrative staff members, and hosted about 12,406 users from institutions in more than 80 countries. In 2016, CERN generated 49 petabytes of data.

↓ Menu
HINT:

👉 CERN in the context of Victor Weisskopf

Victor Frederick "Viki" Weisskopf (also spelled Viktor; September 19, 1908 – April 22, 2002) was an Austrian-born American theoretical physicist and Director-General of CERN from 1961 – 1965.

↓ Explore More Topics
In this Dossier

CERN in the context of World Wide Web

The World Wide Web (also known as WWW, W3, or simply the Web) is an information system that enables content sharing over the Internet through user-friendly ways meant to appeal to users beyond IT specialists and hobbyists. It allows documents and other web resources to be accessed over the Internet according to specific rules of the Hypertext Transfer Protocol (HTTP).

The Web was invented by English computer scientist Tim Berners-Lee while at CERN in 1989 and opened to the public in 1993. It was conceived as a "universal linked information system". Documents and other media content are made available to the network through web servers and can be accessed by programs such as web browsers. Servers and resources on the World Wide Web are identified and located through a character string called uniform resource locator (URL).

View the full Wikipedia page for World Wide Web
↑ Return to Menu

CERN in the context of Zero-point energy

Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions (i.e., leptons and quarks), and force fields, whose quanta are bosons (e.g., photons and gluons). All these fields have zero-point energy. These fluctuating zero-point fields lead to a kind of reintroduction of an aether in physics since some systems can detect the existence of this energy. However, this aether cannot be thought of as a physical medium if it is to be Lorentz invariant such that there is no contradiction with Albert Einstein's theory of special relativity.

The notion of a zero-point energy is also important for cosmology, and physics currently lacks a full theoretical model for understanding zero-point energy in this context; in particular, the discrepancy between theorized and observed vacuum energy in the universe is a source of major contention. Yet according to Einstein's theory of general relativity, any such energy would gravitate, and the experimental evidence from the expansion of the universe, dark energy and the Casimir effect shows any such energy to be exceptionally weak. One proposal that attempts to address this issue is to say that the fermion field has a negative zero-point energy, while the boson field has positive zero-point energy and thus these energies somehow cancel out each other. This idea would be true if supersymmetry were an exact symmetry of nature; however, the Large Hadron Collider at CERN has so far found no evidence to support it. Moreover, it is known that if supersymmetry is valid at all, it is at most a broken symmetry, only true at very high energies, and no one has been able to show a theory where zero-point cancellations occur in the low-energy universe we observe today. This discrepancy is known as the cosmological constant problem and it is one of the greatest unsolved mysteries in physics. Many physicists believe that "the vacuum holds the key to a full understanding of nature".

View the full Wikipedia page for Zero-point energy
↑ Return to Menu

CERN in the context of Carlo Rubbia

Carlo Rubbia OMRI OMCA (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN.

View the full Wikipedia page for Carlo Rubbia
↑ Return to Menu

CERN in the context of Andrei Linde

Andrei Dmitriyevich Linde (Russian: Андре́й Дми́триевич Ли́нде; born March 2, 1948) is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University.

Linde is one of the main authors of the inflationary universe theory, as well as the theory of eternal inflation and inflationary multiverse. He received his Bachelor of Science degree from Moscow State University. In 1975, Linde was awarded a PhD from the Lebedev Physical Institute in Moscow. He worked at CERN (European Organization for Nuclear Research) since 1989 and moved to the United States in 1990, where he became professor of physics at Stanford University. Among the various awards he has received for his work on inflation, in 2002 he was awarded the Dirac Medal, along with Alan Guth of MIT and Paul Steinhardt of Princeton University. In 2004 he received, along with Alan Guth, the Gruber Prize in Cosmology for the development of inflationary cosmology. In 2012 he, along with Alan Guth, was an inaugural awardee of the Breakthrough Prize in Fundamental Physics. In 2014 he received the Kavli Prize in Astrophysics "for pioneering the theory of cosmic inflation", together with Alan Guth and Alexei Starobinsky. In 2018 he received the Gamow Prize.

View the full Wikipedia page for Andrei Linde
↑ Return to Menu

CERN in the context of Large Hadron Collider

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, and hundreds of universities and laboratories across more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

The first collisions were achieved in 2010 at an energy of 3.5 tera-electronvolts (TeV) per beam, about four times the previous world record. The discovery of the Higgs boson at the LHC was announced in 2012. Between 2013 and 2015, the LHC was shut down and upgraded; after those upgrades it reached 6.5 TeV per beam (13.0 TeV total collision energy). At the end of 2018, it was shut down for maintenance and further upgrades, and reopened over three years later in April 2022.

View the full Wikipedia page for Large Hadron Collider
↑ Return to Menu

CERN in the context of Server (computing)

A server is a computer that provides information to other computers called "clients" on a computer network. This architecture is called the client–server model. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients or performing computations for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.

Client–server systems are most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgment. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.

View the full Wikipedia page for Server (computing)
↑ Return to Menu

CERN in the context of Workstation

A workstation is a special computer designed for technical or scientific applications. Intended primarily to be used by a single user, they are commonly connected to a local area network and run multi-user operating systems. The term workstation has been used loosely to refer to everything from a mainframe computer terminal to a PC connected to a network, but the most common form refers to the class of hardware offered by several current and defunct companies such as Sun Microsystems, Silicon Graphics, Apollo Computer, DEC, HP, NeXT, and IBM which powered the 3D computer graphics revolution of the late 1990s.

Workstations formerly offered higher performance specifications than mainstream personal computers, especially in terms of processing, graphics, memory, and multitasking. Workstations are optimized for the visualization and manipulation of different types of complex data such as 3D mechanical design, engineering simulations like computational fluid dynamics, animation, video editing, image editing, medical imaging, image rendering, computational science, generating mathematical plots, and software development. Typically, the form factor is that of a desktop computer, which consists of a high-resolution display, a keyboard, and a mouse at a minimum, but also offers multiple displays, graphics tablets, and 3D mice for manipulating objects and navigating scenes. Workstations were the first segment of the computer market to present advanced accessories, and collaboration tools like videoconferencing.

View the full Wikipedia page for Workstation
↑ Return to Menu

CERN in the context of Multi-touch

In computing, multi-touch is technology that enables a surface (a touchpad or touchscreen) to recognize the presence of more than one point of contact with the surface at the same time. The origins of multitouch began at CERN, MIT, University of Toronto, Carnegie Mellon University and Bell Labs in the 1970s. CERN started using multi-touch screens as early as 1976 for the controls of the Super Proton Synchrotron. Capacitive multi-touch displays were popularized by Apple's iPhone in 2007. Multi-touch may be used to implement additional functionality, such as pinch to zoom or to activate certain subroutines attached to predefined gestures using gesture recognition.

Several uses of the term multi-touch resulted from the quick developments in this field, and many companies using the term to market older technology which is called gesture-enhanced single-touch or several other terms by other companies and researchers. Several other similar or related terms attempt to differentiate between whether a device can exactly determine or only approximate the location of different points of contact to further differentiate between the various technological capabilities, but they are often used as synonyms in marketing.

View the full Wikipedia page for Multi-touch
↑ Return to Menu

CERN in the context of Léon Van Hove

Léon Charles Prudent Van Hove (10 February 1924 – 2 September 1990) was a Belgian physicist and a Director General of CERN. He developed a scientific career spanning mathematics, solid state physics, elementary particle and nuclear physics to cosmology.

View the full Wikipedia page for Léon Van Hove
↑ Return to Menu

CERN in the context of Particle accelerator

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies to contain them in well-defined beams. Small accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacturing of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon.

Large accelerators include the Relativistic Heavy Ion Collider at Brookhaven National Laboratory in New York, and the largest accelerator, the Large Hadron Collider near Geneva, Switzerland, operated by CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. There are more than 30,000 accelerators in operation around the world.

View the full Wikipedia page for Particle accelerator
↑ Return to Menu

CERN in the context of Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts and solar flares.

Fermi, named for high-energy physics pioneer Enrico Fermi, was launched on 11 June 2008 at 16:05 UTC aboard a Delta II 7920-H rocket. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden, becoming the most sensitive gamma-ray telescope on orbit, succeeding INTEGRAL. The project is a recognized CERN experiment (RE7).

View the full Wikipedia page for Fermi Gamma-ray Space Telescope
↑ Return to Menu

CERN in the context of Meritorious Autonomous University of Puebla

The Meritorious Autonomous University of Puebla (Spanish: Benemérita Universidad Autónoma de Puebla) (BUAP) is the oldest and largest university in Puebla, Mexico. Founded on 15 April 1578 as Colegio del Espíritu Santo, the school was sponsored by the Society of Jesus during most of the Spanish colonial era before turning into a public college in 1825 and eventually into a public university in 1937. The religious origins can be seen in many of BUAP's buildings in Puebla city centre, which were once colonial-era churches.

The flagship campus is located in the city of Puebla, although more than nine facilities are distributed across the state. Currently, it is one of the 105 institutes participating in the Alice Experiment at CERN.

View the full Wikipedia page for Meritorious Autonomous University of Puebla
↑ Return to Menu

CERN in the context of Simon van der Meer

Simon van der Meer (24 November 1925 – 4 March 2011) was a Dutch particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z particles, the two fundamental communicators of the weak interaction.

View the full Wikipedia page for Simon van der Meer
↑ Return to Menu

CERN in the context of IceCube Neutrino Observatory

The IceCube Neutrino Observatory (or simply IceCube) is a neutrino observatory developed by the University of Wisconsin–Madison and constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometer.

Similar to its predecessor, the Antarctic Muon And Neutrino Detector Array (AMANDA), IceCube consists of spherical optical sensors called Digital Optical Modules (DOMs), each with a photomultiplier tube (PMT) and a single-board data acquisition computer which sends digital data to the counting house on the surface above the array. IceCube was completed on 18 December 2010.

View the full Wikipedia page for IceCube Neutrino Observatory
↑ Return to Menu

CERN in the context of Higgs mechanism

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W, W, and Z bosons actually have relatively large masses of around 80 GeV/c. The Higgs field resolves this conundrum. The simplest description of the mechanism adds to the Standard Model a quantum field (the Higgs field), which permeates all of space. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons with which it interacts to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature.

The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries never can be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

View the full Wikipedia page for Higgs mechanism
↑ Return to Menu

CERN in the context of LHCb

46°14′28″N 06°05′49″E / 46.24111°N 6.09694°E / 46.24111; 6.09694

The LHCb (Large Hadron Collider beauty) experiment is a particle physics detector collecting data at the Large Hadron Collider at CERN. LHCb specializes in the measurements of the parameters of CP violation in the interactions of b- and c-hadrons (heavy particles containing a bottom and charm quarks). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, and electroweak physics in the forward region. The LHCb collaborators, who built, operate and analyse data from the experiment, are composed of approximately 1650 people from 98 scientific institutes, representing 22 countries. Vincenzo Vagnoni succeeded on July 1, 2023 as spokesperson for the collaboration from Chris Parkes (spokesperson 2020–2023). The experiment is located at point 8 on the LHC tunnel close to Ferney-Voltaire, France just over the border from Geneva. The (small) MoEDAL experiment shares the same cavern.

View the full Wikipedia page for LHCb
↑ Return to Menu

CERN in the context of André Petermann

Andreas Emil Petermann (27 September 1922– 21 August 2011), known as André Petermann, was a Swiss theoretical physicist known for introducing the renormalization group, suggesting a quark-like model, and work related to the anomalous magnetic dipole moment of the muon.

Petermann obtained his doctorate from the University of Lausanne in May 1952 under the supervision of professor Ernst Stueckelberg. The work was funded by the Swiss Atomic Energy Commission. Following Lausanne, Petermann moved on to the University of Manchester, UK, before he became a CERN staff member in 1955. The CERN Theory Division was at that time still hosted at the University of Copenhagen. It was then moved to Geneva together with the CERN experimental groups in 1957.

View the full Wikipedia page for André Petermann
↑ Return to Menu