C3 carbon fixation in the context of "Australopithecus bahrelghazali"

Play Trivia Questions online!

or

Skip to study material about C3 carbon fixation in the context of "Australopithecus bahrelghazali"

Ad spacer

⭐ Core Definition: C3 carbon fixation

C3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C4 and CAM. This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:

This reaction was first discovered by Melvin Calvin, Andrew Benson and James Bassham in 1950. C3 carbon fixation occurs in all plants as the first step of the Calvin–Benson cycle. (In C4 and CAM plants, carbon dioxide is drawn out of malate and into this reaction rather than directly from the air.)

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 C3 carbon fixation in the context of Australopithecus bahrelghazali

Australopithecus bahrelghazali is an extinct species of australopithecine discovered in 1995 at Koro Toro, Bahr el Gazel, Chad, existing around 3.5 million years ago in the Pliocene. It is the first and only australopithecine known from Central Africa, and demonstrates that this group was widely distributed across Africa as opposed to being restricted to East and southern Africa as previously thought. The validity of A. bahrelghazali has not been widely accepted, in favour of classifying the specimens as A. afarensis, a better known Pliocene australopithecine from East Africa, because of the anatomical similarity and the fact that A. bahrelghazali is known only from 3 partial jawbones and an isolated premolar. The specimens inhabited a lakeside grassland environment with sparse tree cover, possibly similar to the modern Okavango Delta, and similarly predominantly ate C4 savanna foods—such as grasses, sedges, storage organs, or rhizomes—and to a lesser degree also C3 forest foods—such as fruits, flowers, pods, or insects. However, the teeth seem ill-equipped to process C4 plants, so its true diet is unclear.

↓ Explore More Topics
In this Dossier

C3 carbon fixation in the context of Photorespiration

Photorespiration (also known as the oxidative photosynthetic carbon cycle or C2 cycle) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, wasting some of the energy produced by photosynthesis. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process lowers the efficiency of photosynthesis, potentially lowering photosynthetic output by 25% in C3 plants. Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria.

The oxygenation reaction of RuBisCO is a wasteful process because 3-phosphoglycerate is created at a lower rate and higher metabolic cost compared with RuBP carboxylase activity. While photorespiratory carbon cycling results in the formation of G3P eventually, around 25% of carbon fixed by photorespiration is re-released as CO2 and nitrogen, as ammonia. Ammonia must then be detoxified at a substantial cost to the cell. Photorespiration also incurs a direct cost of one ATP and one NAD(P)H.

↑ Return to Menu

C3 carbon fixation in the context of BOP clade

The BOP clade (sometimes BEP clade) is one of two major lineages (or clades) of undefined taxonomic rank in the grasses (Poaceae), containing more than 5,400 species, about half of all grasses. Well-known members of this clade include rice, some major cereals such as wheat, barley, oat, and rye, many lawn and pasture grasses, and bamboos. Its sister group is the PACMAD clade; in contrast with many species of that group who have evolved C4 photosynthesis, the BOP grasses all use the C3 photosynthetic pathway.

The clade contains three subfamilies from whose initials its name derives: the bamboos (Bambusoideae); Oryzoideae (syn. Ehrhartoideae), including rice; and Pooideae, mainly distributed in temperate regions, with the largest diversity and important cereal crops such as wheat and barley. Oryzoideae is the earliest-diverging lineage, sister to the bamboos and Pooideae:

↑ Return to Menu

C3 carbon fixation in the context of Angiosperm Phylogeny Group

The Angiosperm Phylogeny Group (APG) is an informal international group of systematic botanists who collaborate to establish a consensus on the taxonomy of flowering plants (angiosperms) that reflects new knowledge about plant relationships discovered through phylogenetic studies.

As of 2016, four incremental versions of a classification system have resulted from this collaboration, published in 1998, 2003, 2009 and 2016. An important motivation for the group was what they considered deficiencies in prior angiosperm classifications since they were not based on monophyletic groups (i.e., groups that include all the descendants of a common ancestor).

↑ Return to Menu

C3 carbon fixation in the context of Calvin cycle

The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many photosynthetic bacteria. In plants, these reactions occur in the stroma, the fluid-filled region of a chloroplast outside the thylakoid membranes. These reactions take the products (ATP and NADPH) of light-dependent reactions and perform further chemical processes on them. The Calvin cycle uses the chemical energy of ATP and the reducing power of NADPH from the light-dependent reactions to produce sugars for the plant to use. These substrates are used in a series of reduction-oxidation (redox) reactions to produce sugars in a step-wise process; there is no direct reaction that converts several molecules of CO2 to a sugar. There are three phases to the light-independent reactions, collectively called the Calvin cycle: carboxylation, reduction reactions, and ribulose 1,5-bisphosphate (RuBP) regeneration.

Though it is also called the "dark reaction", the Calvin cycle does not occur in the dark or during nighttime. This is because the process requires NADPH, which is short-lived and comes from light-dependent reactions. In the dark, plants instead release sucrose into the phloem from their starch reserves to provide energy for the plant. The Calvin cycle thus happens when light is available independent of the kind of photosynthesis (C3 carbon fixation, C4 carbon fixation, and crassulacean acid metabolism (CAM)); CAM plants store malic acid in their vacuoles every night and release it by day to make this process work.

↑ Return to Menu

C3 carbon fixation in the context of C4 photosynthesis

C4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack.

C4 fixation is an addition to the ancestral and more common C3 carbon fixation. The main carboxylating enzyme in C3 photosynthesis is called RuBisCO, which catalyses two distinct reactions using either CO2 (carboxylation) or oxygen (oxygenation) as a substrate. RuBisCO oxygenation gives rise to phosphoglycolate, which is toxic and requires the expenditure of energy to recycle through photorespiration. C4 photosynthesis reduces photorespiration by concentrating CO2 around RuBisCO.

↑ Return to Menu

C3 carbon fixation in the context of Lagomorpha

The lagomorphs (from Ancient Greek λαγώς lagós 'hare' and μορφή morphḗ 'form') are the members of the taxonomic order Lagomorpha, of which there are two living families: the Leporidae (rabbits and hares) and the Ochotonidae (pikas). There are 110 recent species of lagomorph, of which 109 species in twelve genera are extant, including ten genera of rabbits (42 species), one genus of hare (33 species), and one genus of pika (34 species); and in which one monospecific genus is recently extinct, that of the Sardinian pika.

↑ Return to Menu

C3 carbon fixation in the context of Arctodus

Arctodus is an extinct genus of short-faced bears that inhabited North America during the Pleistocene (about 2.6 Mya until 12,800 years ago). The two recognized species are the lesser short-faced bear (Arctodus pristinus) and the giant short-faced bear (Arctodus simus). Of these species, A. simus was larger, is known from more complete remains, and is considered one of the best-known members of North America's extinct Ice Age megafauna. A. pristinus was largely restricted to the Early Pleistocene of the eastern United States, whereas A. simus had a broader range, with most finds being from the Late Pleistocene of the United States, Mexico and Canada. A. simus evolved from A. pristinus, but both species likely overlapped in the Middle Pleistocene. Both species are relatively rare in the fossil record.

Today considered to be an enormous omnivore, Arctodus simus is believed to be one of the largest known terrestrial carnivorans that has ever existed. Arctodus, like other bears, was highly sexually dimorphic. Adult A. simus ranged between 300 and 950 kilograms (660 and 2,090 lb), with females clustering at ≤500 kg (1,100 lb), and males around 800 kg (1,800 lb). The largest males stood at 1.67 m (5 ft 5.7 in) at the shoulder, and up to 3.4 m (11 ft) tall on their rear legs. Studies suggest that A. simus browsed on C3 vegetation and consumed browsing herbivores such as deer, camelids, and tapir. The species preferred temperate open woodlands, but was adaptable, taking advantage of many habitats and feeding opportunities.

↑ Return to Menu