Bumblebee in the context of "Bee"

Play Trivia Questions online!

or

Skip to study material about Bumblebee in the context of "Bee"

Ad spacer

⭐ Core Definition: Bumblebee

A bumblebee (or bumble bee, bumble-bee, or humble-bee) is any of over 250 species in the genus Bombus, part of Apidae, one of the bee families. This genus is the only extant group in the tribe Bombini, though a few extinct related genera (e.g., Calyptapis) are known from fossils. They are found primarily in the Northern Hemisphere, although they are also found in South America, where a few lowland tropical species have been identified. European bumblebees have also been introduced to New Zealand and Tasmania. Female bumblebees can sting repeatedly, but generally ignore humans and other animals.

Most bumblebees are eusocial insects that form colonies with a single queen. The colonies are smaller than those of honey bees, growing to as few as 50 individuals in a nest. Cuckoo bumblebees are brood parasitic and do not make nests or form colonies; their queens aggressively invade the nests of other bumblebee species, kill the resident queens and then lay their own eggs, which are cared for by the resident workers. Cuckoo bumblebees were previously classified as a separate genus, but are now usually treated as members of Bombus.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Bumblebee in the context of Bee

Bees are winged insects that form a monophyletic clade Anthophila within the superfamily Apoidea of the order Hymenoptera, with over 20,000 known species in seven recognized families. Some species – including honey bees, bumblebees, and stingless bees – are social insects living in highly hierarchical colonies, while over 90% of bee species – including mason bees, carpenter bees, leafcutter bees, and sweat bees – are solitary. Members of the most well-known bee genus, Apis (i.e. honey bees), are known to construct hexagonally celled waxy nests called hives.

Unlike the closely related wasps and ants, who are carnivorous/omnivorous, bees are herbivores that specifically feed on nectar (nectarivory) and pollen (palynivory), the former primarily as a carbohydrate source for metabolic energy, and the latter primarily for protein and other nutrients for their larvae. They are found on every continent except Antarctica, and in every habitat on the planet that contains insect-pollinated flowering plants. The most common bees in the Northern Hemisphere are the Halictidae, or sweat bees, but they are small and often mistaken for wasps or flies. Bees range in size from tiny stingless bee species, whose workers are less than 2 millimeters (0.08 in) long, to the leafcutter bee Megachile pluto, the largest species of bee, whose females can attain a length of 39 millimeters (1.54 in). Vertebrate predators of bees include primates and birds such as bee-eaters; insect predators include beewolves and dragonflies.

↓ Explore More Topics
In this Dossier

Bumblebee in the context of Apidae

Apidae is the largest family within the superfamily Apoidea, containing at least 5700 species of bees. The family includes some of the most commonly seen bees, including bumblebees and honey bees, but also includes stingless bees (also used for honey production), carpenter bees, orchid bees, cuckoo bees, and a number of other less widely known groups. Many are valuable pollinators in natural habitats and for agricultural crops.

↑ Return to Menu

Bumblebee in the context of Müllerian mimicry

Müllerian mimicry is a type of biological mimicry in which two or more well-defended species, often foul-tasting and sharing common predators, converge in appearance to mimic each other's honest warning signals. This convergence of appearance achieves the following benefit to species that undergo it: predators need only experience a single unpleasant encounter with any member of a set of Müllerian mimics in order to thereafter avoid all creatures of similar appearance, whether or not it is the same species as the initial encounter. A ring of distinct species is thereby protected from their mutual predators by attempted predation upon any one of its members. The phenomenon is named after the German-Brazilian naturalist Fritz Müller, who proposed the concept in 1878, supporting his theory with a mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.

Müllerian mimicry was first identified in tropical butterflies that shared colourful wing patterns, but it is found in many groups of insects such as bumblebees, as well as in other animals such as poison frogs and coral snakes. The mimicry need not be restricted to that detected by vision—many snakes share auditory warning signals. Similarly, the defences involved are not limited to toxicity—anything that tends to deter predators, such as foul taste, sharp spines, or defensive behaviour can make a species unprofitable enough to predators to allow Müllerian mimicry to develop.

↑ Return to Menu

Bumblebee in the context of Stingless bee

Stingless bees (SB), sometimes called stingless honey bees or simply meliponines, are a large group of bees (from about 462 to 552 described species), comprising the tribe Meliponini (or subtribe Meliponina according to other authors). They belong in the family Apidae (subfamily Apinae), and are closely related to common honey bees (HB, tribe Apini), orchid bees (tribe Euglossini), and bumblebees (tribe Bombini). These four bee tribes belong to the corbiculate bees' monophyletic group. Meliponines have stingers, but they are highly reduced and cannot be used for defense, though these bees exhibit other defensive behaviors and mechanisms. Meliponines are not the only type of bee incapable of stinging: all male bees and many female bees of several other families, such as Andrenidae and Megachilidae (tribe Dioxyini), also cannot sting.

Some stingless bees have strong mandibles and can inflict painful bites. Some species can present large mandibular glands for the secretion of caustic defense substances, secrete unpleasant smells or use sticky materials to immobilise enemies.

↑ Return to Menu

Bumblebee in the context of Bee learning and communication

Bee learning and communication includes cognitive and sensory processes in all kinds of bees, that is the insects in the seven families making up the clade Anthophila. Some species have been studied more extensively than others, in particular Apis mellifera, or European honey bee. Color learning has also been studied in bumblebees.

Honey bees are sensitive to odors (including pheromones), tastes, and colors, including ultraviolet. They can demonstrate capabilities such as color discrimination through classical and operant conditioning and retain this information for several days at least; they communicate the location and nature of sources of food; they adjust their foraging to the times at which food is available; they may even form cognitive maps of their surroundings. They also communicate with each other by means of a "waggle dance" and in other ways.

↑ Return to Menu

Bumblebee in the context of Bourdon (bell)

The bourdon is the heaviest of the bells that belong to a musical instrument, especially a chime or a carillon, and produces its lowest tone. The name derives from the French word for bumblebee.

As an example, the largest bell of a carillon of 64 bells, the sixth largest bell hanging in the world, in the Southern Illinois town of Centralia, is identified as the 'bourdon.' It weighs 5,000 kilograms (11,000 lb) and is tuned to G. In the Netherlands where carillons are native, the heaviest carillon is in Grote Kerk in Dordrecht (South Holland).

↑ Return to Menu

Bumblebee in the context of Pollinator decline

Pollinator decline is the reduction in abundance of insect and other animal pollinators in many ecosystems worldwide that began being recorded at the end of the 20th century. Multiple lines of evidence exist for the reduction of wild pollinator populations at the regional level, especially within Europe and North America. Similar findings from studies in South America, China and Japan make it reasonable to suggest that declines are occurring around the globe. The majority of studies focus on bees, particularly honeybee and bumblebee species, with a smaller number involving hoverflies and lepidopterans.

The picture for domesticated pollinator species is less clear. Although the number of managed honey bee colonies in Europe and North America declined by 25% and 59% between 1985-2005 and 1947-2005 respectively, overall global stocks increased due to major hive number increases in countries such as China and Argentina. Nevertheless, in the time managed honeybee hives increased by 45% demand for animal pollinated crops tripled, highlighting the danger of relying on domesticated populations for pollination services.

↑ Return to Menu

Bumblebee in the context of Müllerian mimic

Müllerian mimicry is a type of biological mimicry in which two or more well-defended species, often foul-tasting and sharing common predators, converge in appearance to mimic each other's honest warning signals. This convergence of appearance achieves the following benefit to species that undergo it: predators need only experience a single unpleasant encounter with any member of a set of Müllerian mimics in order to thereafter avoid all creatures of similar appearance, whether or not it is the same species as the initial encounter. A ring of distinct species is thereby protected from their mutual predators by attempted predation upon any one of its members. The phenomenon is named after the German-Brazilian naturalist Fritz Müller, who proposed the concept in 1878, supporting his theory with a mathematical model of frequency-dependent selection, one of the first such models to be deployed in biology.

Müllerian mimicry was first identified in tropical butterflies that shared colourful wing patterns, but it is found in many groups of insects such as bumblebees, as well as in other animals such as poison frogs and coral snakes. The mimicry need not be restricted to that detected by vision—many snakes share auditory warning signals. Similarly, the defences involved are not limited to toxicity—anything that tends to deter predators, such as foul taste, sharp spines, or defensive behaviour can make a species unprofitable enough to predators to allow Müllerian mimicry to develop.

↑ Return to Menu