Biological target in the context of "Drug design"

Play Trivia Questions online!

or

Skip to study material about Biological target in the context of "Drug design"

Ad spacer

⭐ Core Definition: Biological target

A biological target is anything within a living organism to which some other entity (like an endogenous ligand or a drug) is directed and/or binds, resulting in a change in its behavior or function. Examples of common classes of biological targets are proteins and nucleic acids. The definition is context-dependent, and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone (like insulin), or some other target of an external stimulus. Biological targets are most commonly proteins such as enzymes, ion channels, and receptors, but in recent years DNA's and RNA's became more targeted than in the past.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Biological target in the context of Drug design

Drug design, often referred to as rational drug design or simply rational design, is the inventive process of finding new medications based on the knowledge of a biological target. The drug is most commonly an organic small molecule that activates or inhibits the function of a biomolecule such as a protein, which in turn results in a therapeutic benefit to the patient. In the most basic sense, drug design involves the design of molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Drug design frequently but not necessarily relies on computer modeling techniques. This type of modeling is sometimes referred to as computer-aided drug design. Finally, drug design that relies on the knowledge of the three-dimensional structure of the biomolecular target is known as structure-based drug design. In addition to small molecules, biopharmaceuticals including peptides and especially therapeutic antibodies are an increasingly important class of drugs and computational methods for improving the affinity, selectivity, and stability of these protein-based therapeutics have also been developed.

↓ Explore More Topics
In this Dossier

Biological target in the context of Drug class

A drug class is a group of medications and other compounds that share similar chemical structures, act through the same mechanism of action (i.e., binding to the same biological target), have similar modes of action, and/or are used to treat similar diseases. The FDA has long worked to classify and license new medications. Its Drug Evaluation and Research Center categorizes these medications based on both their chemical and therapeutic classes.

In several major drug classification systems, these four types of classifications are organized into a hierarchy. For example, fibrates are a chemical class of drugs (amphipathic carboxylic acids) that share the same mechanism of action (PPAR agonist), the same mode of action (reducing blood triglyceride levels), and are used to prevent and treat the same disease (atherosclerosis). However, not all PPAR agonists are fibrates, not all triglyceride-lowering agents are PPAR agonists, and not all drugs used to treat atherosclerosis lower triglycerides.A drug class is typically defined by a prototype drug, the most important, and typically the first developed drug within the class, used as a reference for comparison.

↑ Return to Menu

Biological target in the context of Small molecule

In molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight (≤ 1000 daltons) organic compound that may regulate a biological process, with a size on the order of 1 nm. Many drugs are small molecules; the terms are equivalent in the literature. Larger structures such as nucleic acids and proteins, and many polysaccharides are not small molecules, although their constituent monomers (ribo- or deoxyribonucleotides, amino acids, and monosaccharides, respectively) are often considered small molecules. Small molecules may be used as research tools to probe biological function as well as leads in the development of new therapeutic agents. Some can inhibit a specific function of a protein or disrupt protein–protein interactions.

Pharmacology usually restricts the term "small molecule" to molecules that bind specific biological macromolecules and act as an effector, altering the activity or function of the target. Small molecules can have a variety of biological functions or applications, serving as cell signaling molecules, drugs in medicine, pesticides in farming, and in many other roles. These compounds can be natural (such as secondary metabolites) or artificial (such as antiviral drugs); they may have a beneficial effect against a disease (such as drugs) or may be detrimental (such as teratogens and carcinogens).

↑ Return to Menu

Biological target in the context of Pharmacogenomics

Pharmacogenomics, often abbreviated "PGx", is the study of the role of the genome in drug response. Its name (pharmaco- + genomics) reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of a patient affects their response to drugs. It deals with the influence of acquired and inherited genetic variation on drug response, by correlating DNA mutations (including point mutations, copy number variations, and structural variations) with pharmacokinetic (drug absorption, distribution, metabolism, and elimination), pharmacodynamic (effects mediated through a drug's biological targets), and immunogenic endpoints.

Pharmacogenomics aims to develop rational means to optimize drug therapy, with regard to the patients' genotype, to achieve maximum efficiency with minimal adverse effects. It is hoped that by using pharmacogenomics, pharmaceutical drug treatments can deviate from what is dubbed as the "one-dose-fits-all" approach. Pharmacogenomics also attempts to eliminate trial-and-error in prescribing, allowing physicians to take into consideration their patient's genes, the functionality of these genes, and how this may affect the effectiveness of the patient's current or future treatments (and where applicable, provide an explanation for the failure of past treatments). Such approaches promise the advent of precision medicine and even personalized medicine, in which drugs and drug combinations are optimized for narrow subsets of patients or even for each individual's unique genetic makeup.

↑ Return to Menu

Biological target in the context of Ovrette

Norgestrel, sold under the brand name Opill among others, is a progestin which is used in birth control pills. It is often combined with the estrogen ethinylestradiol, marketed as Ovral. It is also used in menopausal hormone therapy. It is taken by mouth.

Side effects of norgestrel include menstrual irregularities, headaches, nausea, and breast tenderness. The most common side effects of the norgestrel include irregular bleeding, headaches, dizziness, nausea, increased appetite, abdominal pain, cramps, or bloating. Norgestrel is a progestin, or a synthetic progestogen, and hence is an agonist of the progesterone receptor, the biological target of progestogens like progesterone. It has weak androgenic activity and no other important hormonal activity.

↑ Return to Menu

Biological target in the context of Depot medroxyprogesterone acetate

Medroxyprogesterone acetate (MPA), also known as depot medroxyprogesterone acetate (DMPA) in injectable form and sold under the brand name Depo-Provera among others, is a hormonal medication of the progestin type. It is used as a method of birth control and as a part of menopausal hormone therapy. It is also used to treat endometriosis, abnormal uterine bleeding, paraphilia, and certain types of cancer. The medication is available both alone and in combination with an estrogen. It is taken by mouth, used under the tongue, or by injection into a muscle or fat.

Common side effects include menstrual disturbances such as absence of periods, abdominal pain, and headaches. More serious side effects include bone loss, blood clots, allergic reactions, and liver problems. Use is not recommended during pregnancy as it may harm the baby. MPA is an artificial progestogen, and as such activates the progesterone receptor, the biological target of progesterone. It also has androgenic activity and weak glucocorticoid activity. Due to its progestogenic activity, MPA decreases the body's release of gonadotropins and can suppress sex hormone levels. It works as a form of birth control by preventing ovulation.

↑ Return to Menu

Biological target in the context of Ketanserin

Ketanserin, sold under the brand name Sufrexal, is an antihypertensive agent which is used to treat arterial hypertension and vasospastic disorders. It is also used in scientific research as an antiserotonergic agent in the study of the serotonin system; specifically, the 5-HT2 receptor family. The drug is taken by mouth.

Side effects of ketanserin include dizziness, tiredness, edema, dry mouth, weight gain, and QT interval prolongation. Ketanserin acts as a selective antagonist of the serotonin 5-HT2A, α1-adrenergic, and histamine H1 receptors. It also shows lower affinity for various other targets.

↑ Return to Menu