Triglyceride in the context of "Drug class"

Play Trivia Questions online!

or

Skip to study material about Triglyceride in the context of "Drug class"

Ad spacer

⭐ Core Definition: Triglyceride

A triglyceride (from tri- and glyceride; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids.Triglycerides are the main constituents of body fat in humans and other vertebrates as well as vegetable fat.They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver and are a major component of human skin oils.

Many types of triglycerides exist. One specific classification focuses on saturated and unsaturated types. Saturated fats have no C=C groups; unsaturated fats feature one or more C=C groups. Unsaturated fats tend to have a lower melting point than saturated analogues; as a result, they are often liquid at room temperature.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Triglyceride in the context of Drug class

A drug class is a group of medications and other compounds that share similar chemical structures, act through the same mechanism of action (i.e., binding to the same biological target), have similar modes of action, and/or are used to treat similar diseases. The FDA has long worked to classify and license new medications. Its Drug Evaluation and Research Center categorizes these medications based on both their chemical and therapeutic classes.

In several major drug classification systems, these four types of classifications are organized into a hierarchy. For example, fibrates are a chemical class of drugs (amphipathic carboxylic acids) that share the same mechanism of action (PPAR agonist), the same mode of action (reducing blood triglyceride levels), and are used to prevent and treat the same disease (atherosclerosis). However, not all PPAR agonists are fibrates, not all triglyceride-lowering agents are PPAR agonists, and not all drugs used to treat atherosclerosis lower triglycerides.A drug class is typically defined by a prototype drug, the most important, and typically the first developed drug within the class, used as a reference for comparison.

↓ Explore More Topics
In this Dossier

Triglyceride in the context of Vegetable oil

Vegetable oils, or vegetable fats, are oils extracted from seeds or from other parts of edible plants. Like animal fats, vegetable fats are mixtures of triglycerides. Soybean oil, grape seed oil, and cocoa butter are examples of seed oils, or fats from seeds. Olive oil, palm oil, and rice bran oil are examples of fats from other parts of plants. In common usage, vegetable oil may refer exclusively to vegetable fats which are liquid at room temperature. Vegetable oils are usually edible.

↑ Return to Menu

Triglyceride in the context of Lipids

Lipids are a broad group of organic compounds that include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

Lipids are broadly defined as hydrophobic or amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicles, multilamellar/unilamellar liposomes, or membranes in an aqueous environment. Biological lipids originate entirely or in part from two distinct types of biochemical subunits or "building-blocks": ketoacyl and isoprene groups. Using this approach, lipids may be divided into eight categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits).

↑ Return to Menu

Triglyceride in the context of Fatty acid

In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are a major component of the lipids (up to 70% by weight) in some species such as microalgae but in some other organisms are not found in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and important structural components for cells.

↑ Return to Menu

Triglyceride in the context of Fat

In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food.

The term often refers specifically to triglycerides (triple esters of glycerol), that are the main components of vegetable oils and of fatty tissue in animals; or, even more narrowly, to triglycerides that are solid or semisolid at room temperature, thus excluding oils. The term may also be used more broadly as a synonym of lipidβ€”any substance of biological relevance, composed of carbon, hydrogen, or oxygen, that is insoluble in water but soluble in non-polar solvents. In this sense, besides the triglycerides, the term would include several other types of compounds like mono- and diglycerides, phospholipids (such as lecithin), sterols (such as cholesterol), waxes (such as beeswax), and free fatty acids, which are usually present in human diet in smaller amounts.

↑ Return to Menu

Triglyceride in the context of Glycogen

Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body.

Glycogen functions as one of three regularly used forms of energy reserves, creatine phosphate being for very short-term, glycogen being for short-term and the triglyceride stores in adipose tissue (i.e., body fat) being for long-term storage. Protein, broken down into amino acids, is seldom used as a main energy source except during starvation and glycolytic crisis (see bioenergetic systems).

↑ Return to Menu