Biological engineering in the context of "Princeton University School of Engineering and Applied Science"

Play Trivia Questions online!

or

Skip to study material about Biological engineering in the context of "Princeton University School of Engineering and Applied Science"

Ad spacer

⭐ Core Definition: Biological engineering

Biological engineering orbioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable energy, ecological engineering, agricultural engineering, process engineering and catalysis, and other areas that improve the living standards of societies.

Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs. Bioengineering overlaps substantially with biotechnology and the biomedical sciences in a way analogous to how various other forms of engineering and technology relate to various other sciences (such as aerospace engineering and other space technology to kinetics and astrophysics).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Biological engineering in the context of Princeton University School of Engineering and Applied Science

The Princeton University School of Engineering and Applied Science (branded as Princeton Engineering) is the engineering school of Princeton University, a private research university in Princeton, New Jersey, United States. The school provides undergraduate and graduate instruction in six departments: chemical and biological engineering, civil and environmental engineering, computer science, electrical engineering, mechanical and aerospace engineering, and operations research and financial engineering. It has more than 1,400 undergraduates, 620 graduate students and 147 faculty members in its six departments.

The School of Engineering is home to four interdisciplinary centers: the Andlinger Center for Energy and the Environment, the Center for Information Technology Policy, the Keller Center for Innovation in Engineering Education, and the Princeton Materials Institute (PMI).

↓ Explore More Topics
In this Dossier

Biological engineering in the context of Chemical engineering

Chemical engineering is an engineering field which deals with the study of the operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modeling, control engineering, chemical reaction engineering, nuclear engineering, biological engineering, construction specification, and operating instructions.

Chemical engineers typically hold a degree in Chemical Engineering or Process Engineering. Practicing engineers may have professional certification and be accredited members of a professional body. Such bodies include the Institution of Chemical Engineers (IChemE) or the American Institute of Chemical Engineers (AIChE) and respective states in the U.S., which ultimately confer licensure and title of Professional Engineer. A degree in chemical engineering is directly linked with all of the other engineering disciplines, to various extents.

↑ Return to Menu

Biological engineering in the context of Medical grade

A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose – either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. The corresponding field of study is called biomaterials science or biomaterials engineering. It has experienced steady growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

A biomaterial is different from a biological material, such as bone, that is produced by a biological system. However, "biomaterial" and "biological material" are often used interchangeably. Further, the word "bioterial" has been proposed as a potential alternate word for biologically produced materials such as bone, or fungal biocomposites. Additionally, care should be exercised in defining a biomaterial as biocompatible, since it is application-specific. A biomaterial that is biocompatible or suitable for one application may not be biocompatible in another.

↑ Return to Menu

Biological engineering in the context of Cleanroom

A cleanroom or clean room is an engineered space that maintains a very low concentration of airborne particulates. It is well-isolated, well-controlled from contamination, and actively cleansed. Such rooms are commonly needed for scientific research and in industrial production for all nanoscale processes, such as semiconductor device manufacturing. A cleanroom is designed to keep everything from dust to airborne organisms or vaporised particles away from it, and so from whatever material is being handled inside it.

A cleanroom can also prevent the escape of materials. This is often the primary aim in hazardous biology, nuclear work, pharmaceutics, and virology.

↑ Return to Menu

Biological engineering in the context of Synthetic biology

Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms. It applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature.

It is a branch of science that encompasses a broad range of methodologies from various disciplines, such as biochemistry, biotechnology, biomaterials, material science/engineering, genetic engineering, molecular biology, molecular engineering, systems biology, membrane science, biophysics, chemical and biological engineering, electrical and computer engineering, control engineering and evolutionary biology.

↑ Return to Menu

Biological engineering in the context of Molecular engineering

Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of β€œbottom-up” design. This field is utmost relevant to Cheminformatics, when related to the research in the Computational Sciences.

Molecular engineering is highly interdisciplinary by nature, encompassing aspects of chemical engineering, materials science, bioengineering, electrical engineering, physics, mechanical engineering, and chemistry. There is also considerable overlap with nanotechnology, in that both are concerned with the behavior of materials on the scale of nanometers or smaller. Given the highly fundamental nature of molecular interactions, there are a plethora of potential application areas, limited perhaps only by one's imagination and the laws of physics. However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications).

↑ Return to Menu