Biofilm in the context of "Carbonate platform"

Play Trivia Questions online!

or

Skip to study material about Biofilm in the context of "Carbonate platform"

Ad spacer

⭐ Core Definition: Biofilm

A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have a three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

Biofilms may form on living (biotic) or non-living (abiotic) surfaces and can be common in natural, industrial, and hospital settings. They may constitute a microbiome or be a portion of it. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single cells that may float or swim in a liquid medium. Biofilms can form on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Biofilm in the context of Prokaryote

A prokaryote (/prˈkærit, -ət/; less commonly spelled procaryote) is a microorganism whose usually single cell lacks a nucleus or other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό (pró), meaning 'before', and κάρυον (káruon), meaning 'nut' or 'kernel'. In the earlier two-empire system, prokaryotes formed the empire Prokaryota. In the three-domain system, based upon molecular phylogenetics, prokaryotes are divided into two domains: Bacteria and Archaea. A third domain, Eukaryota, consists of organisms with nuclei.

Prokaryotes evolved before eukaryotes, and lack nuclei, mitochondria, and most of the other distinct organelles that characterize the eukaryotic cell. Some unicellular prokaryotes, such as cyanobacteria, form colonies held together by biofilms, and large colonies can create multilayered microbial mats. Prokaryotes are asexual, reproducing via binary fission. Horizontal gene transfer is common as well.

↑ Return to Menu

Biofilm in the context of Microbial mat

A microbial mat is a multi-layered sheet or biofilm of microbial colonies, composed of mainly bacteria and/or archaea. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

Although only a few centimetres thick at most, microbial mats create a wide range of internal chemical environments, and hence generally consist of layers of microorganisms that can feed on or at least tolerate the dominant chemicals at their level and which are usually of closely related species. In moist conditions mats are usually held together by slimy substances secreted by the microorganisms. In many cases some of the bacteria form tangled webs of filaments which make the mat tougher. The best known physical forms are flat mats and stubby pillars called stromatolites, but there are also spherical forms.

↑ Return to Menu

Biofilm in the context of Cellulose

Cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the cell walls of green plants, many forms of algae, and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fibre is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.

Cellulose is used mainly to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative products such as cellophane and rayon. Conversion of cellulose from energy crops into biofuels such as cellulosic ethanol is under development as a renewable fuel source. Cellulose for industrial use is mainly obtained from wood pulp and cotton. In addition, cellulose exhibits pronounced susceptibility to direct interactions with certain organic liquids, notably formamide, DMSO, and short-chain amines (methylamine, ethylamine), among other, are recognized as highly effective swelling agents.

↑ Return to Menu

Biofilm in the context of Extracellular polymeric substance

Extracellular polymeric substances (EPS) are natural polymers of high molecular weight secreted by microorganisms into their environment. EPS establish the functional and structural integrity of biofilms, and are considered the fundamental component that determines the physicochemical properties of a biofilm. EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals.

↑ Return to Menu

Biofilm in the context of Filamentation

Filamentation is the anomalous growth of certain bacteria, such as Escherichia coli, in which cells continue to elongate but do not divide (no septa formation). The cells that result from elongation without division have multiple chromosomal copies.

In the absence of antibiotics or other stressors, filamentation occurs at a low frequency in bacterial populations (4–8% short filaments and 0–5% long filaments in 1- to 8-hour cultures). The increased cell length can protect bacteria from protozoan predation and neutrophil phagocytosis by making ingestion of cells more difficult. Filamentation is also thought to protect bacteria from antibiotics, and is associated with other aspects of bacterial virulence such as biofilm formation.

↑ Return to Menu

Biofilm in the context of Tadpole

A tadpole or polliwog (also spelled pollywog) is the larval stage in the biological life cycle of an amphibian. Most tadpoles are fully aquatic, though some species of amphibians have tadpoles that are terrestrial. Tadpoles have some fish-like features that may not be found in adult amphibians, such as a lateral line, gills and swimming tails. As they undergo metamorphosis, they start to develop functional lungs for breathing air, and the diet of tadpoles changes drastically.

A few amphibians, such as some members of the frog family Brevicipitidae, undergo direct development – i.e., they do not undergo a free-living larval stage as tadpoles – instead emerging from eggs as fully formed "froglet" miniatures of the adult morphology. Some other species hatch into tadpoles underneath the skin of the female adult or are kept in a pouch until after metamorphosis. Having no hard skeletons, it might be expected that tadpole fossils would not exist. However, traces of biofilms have been preserved and fossil tadpoles have been found dating back to the Middle Jurassic.

↑ Return to Menu

Biofilm in the context of Slow sand filters

Slow sand filters are used in water purification for treating raw water to produce a potable product. They are typically 1–2 m (3.3–6.6 ft) deep, can be rectangular or cylindrical in cross section and are used primarily to treat surface water. The length and breadth of the tanks are determined by the flow rate desired for the filters, which typically have a loading rate of 200–400 litres (0.20–0.40 m) per square metre per hour.

Slow sand filters differ from all other filters used to treat drinking water in that they work by using a complex biofilm that grows naturally on the surface of the sand. The sand itself does not perform any filtration function but simply acts as a substrate, unlike its counterparts for ultraviolet and pressurized treatments. Although they are often preferred technology in many developing countries because of their low energy requirements and robust performance, they are also used to treat water in some developed countries, such as the UK, where they are used to treat water supplied to London. Slow sand filters now are also being tested for pathogen control of nutrient solutions in hydroponic systems.

↑ Return to Menu