Bell Labs in the context of SNOBOL


Bell Labs in the context of SNOBOL

Bell Labs Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Bell Labs in the context of "SNOBOL"


⭐ Core Definition: Bell Labs

Nokia Bell Labs, commonly referred to as Bell Labs, is an American industrial research and development company owned by the Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, the company operates several laboratories in the United States and around the world.

As a former subsidiary of the American Telephone and Telegraph Company (AT&T), Bell Labs and its researchers have been credited with the development of radio astronomy, the transistor, the laser, the photovoltaic cell, the charge-coupled device (CCD), information theory, the Unix operating system, and the programming languages B, C, C++, S, SNOBOL, AWK, AMPL, and others, throughout the 20th century. Eleven Nobel Prizes and five Turing Awards have been awarded for work completed at Bell Laboratories.

↓ Menu
HINT:

In this Dossier

Bell Labs in the context of Robert Woodrow Wilson

Robert Woodrow Wilson (born January 10, 1936) is an American astronomer who, along with Arno Allan Penzias, discovered cosmic microwave background radiation (CMB) in 1964. The pair won the 1978 Nobel Prize in Physics for its discovery.

While doing tests and experiments with the Holmdel Horn Antenna at Bell Labs in Holmdel Township, New Jersey, Wilson and Penzias discovered a source of noise in the atmosphere that they could not explain. After removing all potential sources of noise, including pigeon droppings on the antenna, the noise was finally identified as CMB, which served as important corroboration of the Big Bang theory.

View the full Wikipedia page for Robert Woodrow Wilson
↑ Return to Menu

Bell Labs in the context of Source code

In computing, source code, or simply code or source, is human readable plain text that can eventually result in controlling the behavior of a computer. In order to control a computer, it must be processed by a computer program – either executed directly via an interpreter or translated into a more computer-consumable form such as via a compiler. Sometimes, code is compiled directly to machine code so that it can be run in the native language of the computer without further processing. But, many modern environments involve compiling to an intermediate representation such as bytecode that can either run via an interpreter or be compiled on-demand to machine code via just-in-time compilation.

View the full Wikipedia page for Source code
↑ Return to Menu

Bell Labs in the context of College campus

A campus traditionally refers to the land and buildings of a college or university. This will often include libraries, lecture halls, student centers and, for residential universities, residence halls and dining halls.

By extension, a corporate campus is a collection of buildings and grounds that belong to a company, particularly in the technology sector. Examples include Bell Labs, the Googleplex and Apple Park.

View the full Wikipedia page for College campus
↑ Return to Menu

Bell Labs in the context of ISDN

Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the digitalised circuits of the public switched telephone network. Work on the standard began in 1980 at Bell Labs and was formally standardized in 1988 in the CCITT "Red Book". By the time the standard was released, newer networking systems with much greater speeds were available, and ISDN saw relatively little uptake in the wider market. One estimate suggests ISDN use peaked at a worldwide total of 25 million subscribers at a time when 1.3 billion analog lines were in use. ISDN has largely been replaced with digital subscriber line (DSL) systems of much higher performance.

Prior to ISDN, the telephone system consisted of digital links like T1/E1 on the long-distance lines between telephone company offices and analog signals on copper telephone wires to the customers, the "last mile". At the time, the network was viewed as a way to transport voice, with some special services available for data using additional equipment like modems or by providing a T1 on the customer's location. What became ISDN started as an effort to digitize the last mile, originally under the name "Public Switched Digital Capacity" (PSDC). This would allow call routing to be completed in an all-digital system, while also offering a separate data line. The Basic Rate Interface, or BRI, is the standard last-mile connection in the ISDN system, offering two 64 kbit/s "bearer" lines and a single 16 kbit/s "data" channel for commands and data.

View the full Wikipedia page for ISDN
↑ Return to Menu

Bell Labs in the context of Transistor

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

Physicist Julius Edgar Lilienfeld proposed the concept of a field-effect transistor (FET) in 1925, but it was not possible to construct a working device at that time. The first working device was a point-contact transistor invented in 1947 by physicists John Bardeen, Walter Brattain, and William Shockley at Bell Labs who shared the 1956 Nobel Prize in Physics for their achievement. The most widely used type of transistor, the metal–oxide–semiconductor field-effect transistor (MOSFET), was invented at Bell Labs between 1955 and 1960. Transistors revolutionized the field of electronics and paved the way for smaller and cheaper radios, calculators, computers, and other electronic devices.

View the full Wikipedia page for Transistor
↑ Return to Menu

Bell Labs in the context of Semiconductor industry

The semiconductor industry is the aggregate of companies engaged in the design and fabrication of semiconductors and semiconductor devices, such as transistors and integrated circuits. Its roots can be traced to the invention of the transistor by Shockley, Brattain, and Bardeen at Bell Labs in 1948. Bell Labs licensed the technology for $25,000, and soon many companies, including Motorola (1952), Shockley Semiconductor (1955), Sylvania, Centralab, Fairchild Semiconductor and Texas Instruments were making transistors. In 1958 Jack Kilby of Texas Instruments and Robert Noyce of Fairchild independently invented the Integrated Circuit, a method of producing multiple transistors on a single "chip" of Semiconductor material. This kicked off a number of rapid advances in fabrication technology leading to the exponential growth in semiconductor device production, known as Moore's law that has persisted over the past six or so decades. The industry's annual semiconductor sales revenue has since grown to over $481 billion, as of 2018.

In 2010, the semiconductor industry had the highest intensity of Research & Development in the EU and ranked second after Biotechnology in the EU, United States and Japan combined.

View the full Wikipedia page for Semiconductor industry
↑ Return to Menu

Bell Labs in the context of Multi-touch

In computing, multi-touch is technology that enables a surface (a touchpad or touchscreen) to recognize the presence of more than one point of contact with the surface at the same time. The origins of multitouch began at CERN, MIT, University of Toronto, Carnegie Mellon University and Bell Labs in the 1970s. CERN started using multi-touch screens as early as 1976 for the controls of the Super Proton Synchrotron. Capacitive multi-touch displays were popularized by Apple's iPhone in 2007. Multi-touch may be used to implement additional functionality, such as pinch to zoom or to activate certain subroutines attached to predefined gestures using gesture recognition.

Several uses of the term multi-touch resulted from the quick developments in this field, and many companies using the term to market older technology which is called gesture-enhanced single-touch or several other terms by other companies and researchers. Several other similar or related terms attempt to differentiate between whether a device can exactly determine or only approximate the location of different points of contact to further differentiate between the various technological capabilities, but they are often used as synonyms in marketing.

View the full Wikipedia page for Multi-touch
↑ Return to Menu

Bell Labs in the context of Fiber-optic communication

Fiber-optic communication is a form of optical communication for transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

Optical fiber is used by many telecommunications companies to transmit telephone signals, internet communication, and cable television signals. Researchers at Bell Labs have reached a record bandwidth–distance product of over 100 petabit × kilometers per second using fiber-optic communication.

View the full Wikipedia page for Fiber-optic communication
↑ Return to Menu

Bell Labs in the context of C (programming language)

C is a general-purpose programming language. It was created in the 1970s by Dennis Ritchie and remains widely used and influential. By design, C gives the programmer relatively direct access to the features of the typical CPU architecture, customized for the target instruction set. It has been and continues to be used to implement operating systems (especially kernels), device drivers, and protocol stacks, but its use in application software has been decreasing. C is used on computers that range from the largest supercomputers to the smallest microcontrollers and embedded systems.

A successor to the programming language B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the most widely used programming languages, with C compilers available for practically all modern computer architectures and operating systems. The book The C Programming Language, co-authored by the original language designer, served for many years as the de facto standard for the language. C has been standardized since 1989 by the American National Standards Institute (ANSI) and, subsequently, jointly by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC).

View the full Wikipedia page for C (programming language)
↑ Return to Menu

Bell Labs in the context of Brian Kernighan

Brian Wilson Kernighan (/ˈkɜːrnɪhæn/; born 30 January 1942) is a Canadian computer scientist.He worked at Bell Labs and contributed to the development of Unix alongside Unix creators Ken Thompson and Dennis Ritchie. Kernighan's name became widely known through co-authorship of the first book on the C programming language (The C Programming Language) with Dennis Ritchie. Kernighan affirmed that he had no part in the design of the C language ("it's entirely Dennis Ritchie's work").

Kernighan authored many Unix programs, including ditroff. He is coauthor of the AWK and AMPL programming languages. The "K" of K&R C and of AWK both stand for "Kernighan".

View the full Wikipedia page for Brian Kernighan
↑ Return to Menu

Bell Labs in the context of BSD

The Berkeley Software Distribution (BSD), also known as Berkeley Unix, is a discontinued Unix operating system developed and distributed by the Computer Systems Research Group (CSRG) at the University of California, Berkeley. First released in 1978, it began as an improved derivative of AT&T's original Unix developed at Bell Labs, based on the source code. Over time, BSD evolved into a distinct operating system and played a significant role in computing and the development and dissemination of Unix-like systems.

BSD development was initially led by Bill Joy, who added virtual memory capability to Unix running on a VAX-11 computer. During the 1980s, BSD gained widespread adoption by workstation vendors in the form of proprietary Unix distributions—such as DEC with Ultrix and Sun Microsystems with SunOS—due to its permissive licensing and familiarity among engineers. BSD also became the most widely used Unix variant in academic institutions, where it was used for the study of operating systems. The BSD project received funding from DARPA until 1988, during which time BSD incorporated ARPANET support and later implemented the TCP/IP protocol suite, released as part of BSD NET/1 in 1988. By that time, the codebase had diverged significantly from the original AT&T Unix, with estimates suggesting that less than 5% of the code remained from AT&T. As a result, NET/1 was distributed without requiring an AT&T source license.

View the full Wikipedia page for BSD
↑ Return to Menu

Bell Labs in the context of Vanguard TV3

Vanguard TV-3 (also called Vanguard Test Vehicle-Three), was the first attempt of the United States to launch a satellite into orbit around the Earth, after the successful Soviet launches of Sputnik 1 and Sputnik 2. Vanguard TV-3 was a small satellite designed to test the launch capabilities of the three-stage Vanguard and study the effects of the environment on a satellite and its systems in Earth orbit. It was also to be used to obtain geodetic measurements through orbit analysis. Solar cells on Vanguard TV-3 were manufactured by Bell Laboratories.

At its launch attempt on 6 December 1957, at Cape Canaveral Air Force Station, the booster ignited and began to rise, but about two seconds after liftoff, after rising about 1.2 m (four feet), the rocket lost thrust and fell back to the launch pad. As it settled, the fuel tanks ruptured and exploded, destroying the rocket and severely damaging the launch pad. The Vanguard 1A satellite was thrown clear and landed on the ground a short distance away with its transmitters still sending out a beacon signal. The satellite was damaged, however, and could not be reused. It is now on display at the National Air and Space Museum of the Smithsonian Institution.

View the full Wikipedia page for Vanguard TV3
↑ Return to Menu

Bell Labs in the context of Breakup of the Bell System

The Bell System held a virtual monopoly over telephony infrastructure in the United States from around the early 20th century until January 8, 1982. It consisted of parent the American Telephone & Telegraph Company (AT&T), which directly provided long-distance service, while local service was provided by 24 local Bell Operating Companies, which owned whole or in part by AT&T, while its manufacturing subsidiary Western Electric produced almost all of its equipment, which was largely designed at the research and development subsidiary Bell Labs. As a result, AT&T had substantial control over the United States' communications infrastructure.

The breakup of the system was initiated in 1974 when the United States Department of Justice filed United States v. AT&T, an antitrust lawsuit against AT&T. Relinquishing ownership of Western Electric was one of the Justice Department’s primary demands.

View the full Wikipedia page for Breakup of the Bell System
↑ Return to Menu

Bell Labs in the context of Unix

Unix (/ˈjnɪks/ , YOO-niks; trademarked as UNIX) is a family of multitasking, multi-user computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and others. Initially intended for use inside the Bell System, AT&T licensed Unix to outside parties in the late 1970s, leading to a variety of both academic and commercial Unix variants from vendors including University of California, Berkeley (BSD), Microsoft (Xenix), Sun Microsystems (SunOS/Solaris), HP/HPE (HP-UX), and IBM (AIX).

The early versions of Unix—which are retrospectively referred to as "Research Unix"—ran on computers such as the PDP-11 and VAX; Unix was commonly used on minicomputers and mainframes from the 1970s onwards. It distinguished itself from its predecessors as the first portable operating system: almost the entire operating system is written in the C programming language (in 1973), which allows Unix to operate on numerous platforms. Unix systems are characterized by a modular design that is sometimes called the "Unix philosophy". According to this philosophy, the operating system should provide a set of simple tools, each of which performs a limited, well-defined function. A unified and inode-based filesystem and an inter-process communication mechanism known as "pipes" serve as the main means of communication, and a shell scripting and command language (the Unix shell) is used to combine the tools to perform complex workflows.

View the full Wikipedia page for Unix
↑ Return to Menu

Bell Labs in the context of Orthogonal frequency-division multiplexing

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

OFDM is a frequency-division multiplexing (FDM) scheme that was introduced by Robert W. Chang of Bell Labs in 1966. In OFDM, the incoming bitstream representing the data to be sent is divided into multiple streams. Multiple closely spaced orthogonal subcarrier signals with overlapping spectra are transmitted, with each carrier modulated with bits from the incoming stream so multiple bits are being transmitted in parallel. Demodulation is based on fast Fourier transform algorithms. OFDM was improved by Weinstein and Ebert in 1971 with the introduction of a guard interval, providing better orthogonality in transmission channels affected by multipath propagation. Each subcarrier (signal) is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase-shift keying) at a low symbol rate. This maintains total data rates similar to conventional single-carrier modulation schemes in the same bandwidth.

View the full Wikipedia page for Orthogonal frequency-division multiplexing
↑ Return to Menu

Bell Labs in the context of T-carrier

The T-carrier system is a member of the series of data-multiplexing carrier systems developed by AT&T Bell Laboratories for digital transmission of multiplexed telephone calls.

The first version, the Transmission System 1 (T1), was introduced in 1962 in the Bell System, and could transmit up to 24 telephone calls simultaneously over a single transmission line of twisted pair copper wire. Subsequent specifications carried multiples of the basic T1 (1.544 Mbit/s) data rates, such as T2 (6.312 Mbit/s) with 96 channels, T3 (44.736 Mbit/s) with 672 channels, and others.

View the full Wikipedia page for T-carrier
↑ Return to Menu