Automatic programming in the context of ALGOL


Automatic programming in the context of ALGOL

Automatic programming Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Automatic programming in the context of "ALGOL"


⭐ Core Definition: Automatic programming

In computer science, automatic programming is a type of computer programming in which some mechanism generates a computer program, to allow human programmers to write the code at a higher abstraction level.

There has been little agreement on the precise definition of automatic programming, mostly because its meaning has changed over time. David Parnas, tracing the history of "automatic programming" in published research, noted that in the 1940s it described automation of the manual process of punching paper tape. Later it referred to translation of high-level programming languages like Fortran and ALGOL. In fact, one of the earliest programs identifiable as a compiler was called Autocode. Parnas concluded that "automatic programming has always been a euphemism for programming in a higher-level language than was then available to the programmer."

↓ Menu
HINT:

In this Dossier

Automatic programming in the context of Large language model

A large language model (LLM) is a language model trained with self-supervised machine learning on a vast amount of text, designed for natural language processing tasks, especially language generation. The largest and most capable LLMs are generative pre-trained transformers (GPTs) and provide the core capabilities of modern chatbots. LLMs can be fine-tuned for specific tasks or guided by prompt engineering. These models acquire predictive power regarding syntax, semantics, and ontologies inherent in human language corpora, but they also inherit inaccuracies and biases present in the data they are trained on.

They consist of billions to trillions of parameters and operate as general-purpose sequence models, generating, summarizing, translating, and reasoning over text. LLMs represent a significant new technology in their ability to generalize across tasks with minimal task-specific supervision, enabling capabilities like conversational agents, code generation, knowledge retrieval, and automated reasoning that previously required bespoke systems.

View the full Wikipedia page for Large language model
↑ Return to Menu

Automatic programming in the context of Semantic parsing

Semantic parsing is the task of converting a natural language utterance to a logical form: a machine-understandable representation of its meaning. Semantic parsing can thus be understood as extracting the precise meaning of an utterance. Applications of semantic parsing include machine translation, question answering, ontology induction, automated reasoning, and code generation. The phrase was first used in the 1970s by Yorick Wilks as the basis for machine translation programs working with only semantic representations. Semantic parsing is one of the important tasks in computational linguistics and natural language processing.

Semantic parsing maps text to formal meaningrepresentations. This contrasts with semantic rolelabeling and otherforms of shallow semantic processing, which donot aim to produce complete formal meanings.In computer vision, semantic parsing is a process of segmentation for 3D objects.

View the full Wikipedia page for Semantic parsing
↑ Return to Menu