Information retrieval in the context of "Large language model"

Play Trivia Questions online!

or

Skip to study material about Information retrieval in the context of "Large language model"

Ad spacer

⭐ Core Definition: Information retrieval

Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds. Cross-modal retrieval implies retrieval across modalities.

Automated information retrieval systems are used to reduce what has been called information overload. An IR system is a software system that provides access to books, journals and other documents; it also stores and manages those documents. Web search engines are the most visible IR applications.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Information retrieval in the context of Natural language processing

Natural language processing (NLP) is the processing of natural language information by a computer. The study of NLP, a subfield of computer science, is generally associated with artificial intelligence. NLP is related to information retrieval, knowledge representation, computational linguistics, and more broadly with linguistics.

Major processing tasks in an NLP system include: speech recognition, text classification, natural language understanding, and natural language generation.

↑ Return to Menu

Information retrieval in the context of Data

Data (/ˈdtə/ DAY-tə, US also /ˈdætə/ DAT) are a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data are usually organized into structures such as tables that provide additional context and meaning, and may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements.Data are commonly used in scientific research, economics, and virtually every other form of human organizational activity. Examples of data sets include price indices (such as the consumer price index), unemployment rates, literacy rates, and census data. In this context, data represent the raw facts and figures from which useful information can be extracted.

Data are collected using techniques such as measurement, observation, query, or analysis, and are typically represented as numbers or characters that may be further processed. Field data are data that are collected in an uncontrolled, in-situ environment. Experimental data are data that are generated in the course of a controlled scientific experiment. Data are analyzed using techniques such as calculation, reasoning, discussion, presentation, visualization, or other forms of post-analysis. Prior to analysis, raw data (or unprocessed data) is typically cleaned: Outliers are removed, and obvious instrument or data entry errors are corrected.

↑ Return to Menu

Information retrieval in the context of Cluster analysis

Cluster analysis, or clustering, is a data analysis technique aimed at partitioning a set of objects into groups such that objects within the same group (called a cluster) exhibit greater similarity to one another (in some specific sense defined by the analyst) than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning.

Cluster analysis refers to a family of algorithms and tasks rather than one specific algorithm. It can be achieved by various algorithms that differ significantly in their understanding of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances between cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multi-objective optimization problem. The appropriate clustering algorithm and parameter settings (including parameters such as the distance function to use, a density threshold or the number of expected clusters) depend on the individual data set and intended use of the results. Cluster analysis as such is not an automatic task, but an iterative process of knowledge discovery or interactive multi-objective optimization that involves trial and failure. It is often necessary to modify data preprocessing and model parameters until the result achieves the desired properties.

↑ Return to Menu

Information retrieval in the context of Digital library

A digital library (also called an online library, an internet library, a digital repository, a library without walls, or a digital collection) is an online database of digital resources that can include text, still images, audio, video, digital documents, or other digital media formats or a library accessible through the internet. Objects can consist of digitized content like print or photographs, as well as originally produced digital content like word processor files or social media posts. In addition to storing content, digital libraries provide means for organizing, searching, and retrieving the content contained in the collection. Digital libraries can vary immensely in size and scope, and can be maintained by individuals or organizations. The digital content may be stored locally, or accessed remotely via computer networks. These information retrieval systems are able to exchange information with each other through interoperability and sustainability.

↑ Return to Menu

Information retrieval in the context of Information science

Information science (sometimes abbreviated as infosci) is an academic field which is primarily concerned with analysis, collection, classification, manipulation, storage, retrieval, movement, dissemination, and protection of information. Practitioners within and outside the field study the application and the usage of knowledge in organizations in addition to the interaction between people, organizations, and any existing information systems with the aim of creating, replacing, improving, or understanding the information systems.

↑ Return to Menu

Information retrieval in the context of Pattern recognition

Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess PR capabilities but their primary function is to distinguish and create emergent patterns. PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power.

Pattern recognition systems are commonly trained from labeled "training" data. When no labeled data are available, other algorithms can be used to discover previously unknown patterns. KDD and data mining have a larger focus on unsupervised methods and stronger connection to business use. Pattern recognition focuses more on the signal and also takes acquisition and signal processing into consideration. It originated in engineering, and the term is popular in the context of computer vision: a leading computer vision conference is named Conference on Computer Vision and Pattern Recognition.

↑ Return to Menu

Information retrieval in the context of Quantum information science

Quantum information science is an interdisciplinary field that combines the principles of quantum mechanics, information theory, and computer science to explore how quantum phenomena can be harnessed for the processing, analysis, and transmission of information. Quantum information science covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it refers to the theoretical aspects of information processing and does not include experimental research.

At its core, quantum information science explores how information behaves when stored and manipulated using quantum systems. Unlike classical information, which is encoded in bits that can only be 0 or 1, quantum information uses quantum bits or qubits that can exist simultaneously in multiple states because of superposition. Additionally, entanglement—a uniquely quantum linkage between particles—enables correlations that have no classical counterpart.

↑ Return to Menu