Quantum information science in the context of "Information retrieval"

Play Trivia Questions online!

or

Skip to study material about Quantum information science in the context of "Information retrieval"

Ad spacer

⭐ Core Definition: Quantum information science

Quantum information science is an interdisciplinary field that combines the principles of quantum mechanics, information theory, and computer science to explore how quantum phenomena can be harnessed for the processing, analysis, and transmission of information. Quantum information science covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it refers to the theoretical aspects of information processing and does not include experimental research.

At its core, quantum information science explores how information behaves when stored and manipulated using quantum systems. Unlike classical information, which is encoded in bits that can only be 0 or 1, quantum information uses quantum bits or qubits that can exist simultaneously in multiple states because of superposition. Additionally, entanglement—a uniquely quantum linkage between particles—enables correlations that have no classical counterpart.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Quantum information science in the context of Quantum optics

Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction with, for instance, atoms and molecules. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing.

↑ Return to Menu

Quantum information science in the context of Quantum mechanics

Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum biology, quantum field theory, quantum technology, and quantum information science.

Quantum mechanics can describe many systems that classical physics cannot. Classical physics can describe many aspects of nature at an ordinary (macroscopic and (optical) microscopic) scale, but is not sufficient for describing them at very small submicroscopic (atomic and subatomic) scales. Classical mechanics can be derived from quantum mechanics as an approximation that is valid at ordinary scales.

↑ Return to Menu