Asteroid in the context of Normal gravity


Asteroid in the context of Normal gravity

Asteroid Study page number 1 of 12

Play TriviaQuestions Online!

or

Skip to study material about Asteroid in the context of "Normal gravity"


⭐ Core Definition: Asteroid

An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the inner Solar System or is co-orbital with Jupiter (Trojan asteroids). Asteroids are rocky, metallic, or icy bodies with no atmosphere, and are broadly classified into C-type (carbonaceous), M-type (metallic), or S-type (silicaceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to Ceres, a dwarf planet almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies.

Of the roughly one million known asteroids, the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 astronomical units (AU) from the Sun, in a region known as the main asteroid belt. The total mass of all the asteroids combined is only 3% that of Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to complete a full circuit of the Sun.

↓ Menu
HINT:

In this Dossier

Asteroid in the context of Astronomy

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is the branch of astronomy that studies the universe as a whole.

Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Egyptians, Babylonians, Greeks, Indians, Chinese, Maya, and many ancient indigenous peoples of the Americas. In the past, astronomy included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars.

View the full Wikipedia page for Astronomy
↑ Return to Menu

Asteroid in the context of 271 Penthesilea

271 Penthesilea is a mid-sized main belt asteroid that was discovered by Viktor Knorre on 13 October 1887 in Berlin. It was his last asteroid discovery. The asteroid was named after Penthesilea, the mythical Greek queen of the Amazons.

Photometric observations of this asteroid were made in early 2009 at the Organ Mesa Observatory in Las Cruces, New Mexico. The resulting light curve shows a synodic rotation period of 18.787 ± 0.001 hours with a brightness variation of 0.32 ± 0.04 in magnitude.

View the full Wikipedia page for 271 Penthesilea
↑ Return to Menu

Asteroid in the context of Astronomical object

An astronomical object, celestial object, stellar object or heavenly object is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body, celestial body or heavenly body is a single, tightly bound, contiguous physical object, while an astronomical or celestial object admits a more complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Examples of astronomical objects include planetary systems, star clusters, nebulae, and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both a body and an object: It is a body when referring to the frozen nucleus of ice and dust, and an object when describing the entire comet with its diffuse coma and tail.

View the full Wikipedia page for Astronomical object
↑ Return to Menu

Asteroid in the context of Meteoroid

A meteoroid (/ˈmtiərɔɪd/ MEE-tee-ə-royd) is a small body in outer space.Meteoroids are distinguished as objects significantly smaller than asteroids, ranging in size from grains to objects up to one meter (3.28 feet) wide. Objects smaller than meteoroids are classified as micrometeoroids or space dust. Many are fragments from comets or asteroids, whereas others are collision impact debris ejected from bodies such as the Moon or Mars.

The visible passage of a meteoroid, comet, or asteroid entering Earth's atmosphere is called a meteor, and a series of many meteors appearing seconds or minutes apart and appearing to originate from the same fixed point in the sky is called a meteor shower.

View the full Wikipedia page for Meteoroid
↑ Return to Menu

Asteroid in the context of Earth's geological history

The geological history of Earth follows the major geological events in Earth's past based on the geologic time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed approximately 4.54 billion years ago through accretion from the solar nebula, a disk-shaped mass of dust and gas remaining from the formation of the Sun, which also formed the rest of the Solar System.

Initially, Earth was molten due to extreme volcanism and frequent collisions with other bodies. Eventually, the outer layer of the planet cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed soon afterwards, possibly as a result of the impact of a protoplanet with Earth. Outgassing and volcanic activity produced the primordial atmosphere. Condensing water vapor, augmented by ice delivered from asteroids, produced the oceans. However, in 2020, researchers reported that sufficient water to fill the oceans may have always been on Earth since the beginning of the planet's formation.

View the full Wikipedia page for Earth's geological history
↑ Return to Menu

Asteroid in the context of JAXA

The Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構, Kokuritsu-kenkyū-kaihatsu-hōjin Uchū Kōkū Kenkyū Kaihatsu Kikō; lit.'National Research and Development Agency Aerospace Research and Development Organisation') is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orbit, and is involved in many more advanced missions such as asteroid exploration and possible human exploration of the Moon. Its motto is One JAXA and its corporate slogan is Explore to Realize (formerly Reaching for the skies, exploring space).

View the full Wikipedia page for JAXA
↑ Return to Menu

Asteroid in the context of Asteroid belt

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers (or six hundred thousand miles) apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

The asteroid belt is the smallest and innermost circumstellar disc in the Solar System. Classes of small Solar System bodies in other regions are the near-Earth objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids, and the Oort cloud objects. About 60% of the main belt mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is estimated to be 3% that of the Moon.

View the full Wikipedia page for Asteroid belt
↑ Return to Menu

Asteroid in the context of Planetary science

Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in sizes from micrometeoroids to huge gas giants, with the aim of determining their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve combinations of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

View the full Wikipedia page for Planetary science
↑ Return to Menu

Asteroid in the context of Small Solar System body

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies'".

This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres; the trojans; and the centaurs and trans-Neptunian objects, with the exception of the dwarf planets Pluto, Haumea, Makemake, Quaoar, Orcus, Sedna, Gonggong and Eris and others that may turn out to be dwarf planets.

View the full Wikipedia page for Small Solar System body
↑ Return to Menu

Asteroid in the context of Planetary geology

Planetary geology, alternatively known as astrogeology or exogeology, is a planetary science discipline concerned with the geology of celestial bodies such as planets and their moons, asteroids, comets, and meteorites. Although the geo- prefix typically indicates topics of or relating to Earth, planetary geology is named as such for historical and convenience reasons; due to the subject matter, it is closely linked with more traditional Earth-based geology.

Planetary geology includes such topics as determining the properties and processes of the internal structure of the terrestrial planets, surface processes such as volcanism, impact craters, even fluvial and aeolian action where applicable. Despite their outermost layers being dominated by gases, the giant planets are also included in the field of planetary geology, especially when it comes to their interiors. Fields within Planetary geology are largely derived from fields in the traditional geological sciences, such as geophysics, geomorphology, and geochemistry.

View the full Wikipedia page for Planetary geology
↑ Return to Menu

Asteroid in the context of Flyby (spaceflight)

A flyby (/ˈflb/) is a spaceflight operation in which a spacecraft passes in proximity to another body, usually a target of its space exploration mission and/or a source of a gravity assist (also called swing-by) to impel it towards another target. Spacecraft which are specifically designed for this purpose are known as flyby spacecraft, although the term has also been used in regard to asteroid flybys of Earth for example. Important parameters are the time and distance of closest approach.

View the full Wikipedia page for Flyby (spaceflight)
↑ Return to Menu

Asteroid in the context of Cretaceous–Paleogene extinction event

The Cretaceous–Paleogene (K–Pg) extinction event, formerly known as the Cretaceous-Tertiary (K–T) extinction event, was a major mass extinction of three-quarters of the plant and animal species on Earth approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs. Most other tetrapods weighing more than 25 kg (55 lb) also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians. It marked the end of the Cretaceous period, and with it the Mesozoic era, while heralding the beginning of the current geological era, the Cenozoic Era. In the geologic record, the K–Pg event is marked by a thin layer of sediment called the K–Pg boundary or K–T boundary, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal iridium, which is more common in asteroids than in the Earth's crust.

As originally proposed in 1980 by a team of scientists led by Luis Alvarez and his son Walter, it is now generally thought that the K–Pg extinction resulted from the impact of a massive asteroid 10 to 15 km (6 to 9 mi) wide, 66 million years ago, causing the Chicxulub impact crater and devastating the global environment, mainly through a lingering impact winter which halted photosynthesis in plants and plankton. The impact hypothesis, also known as the Alvarez hypothesis, was bolstered by the discovery of the 180 km (112 mi) Chicxulub crater in the Gulf of Mexico's Yucatán Peninsula in the early 1990s. The temporal match between the ejecta layer, and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling), lead to the conclusion that the Chicxulub impact triggered the mass extinction. A 2016 drilling project into the Chicxulub peak ring confirmed that the peak ring comprised granite ejected within minutes from deep in the Earth, but contained hardly any gypsum, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an aerosol into the atmosphere, causing longer-term effects on the climate and food chain. In October 2019, researchers proposed the mechanisms of the mass extinction, arguing that the Chicxulub asteroid impact event rapidly acidified the oceans and produced long-lasting effects on the climate.

View the full Wikipedia page for Cretaceous–Paleogene extinction event
↑ Return to Menu

Asteroid in the context of Planetary system

A planetary system consists of a set of non-stellar bodies which are gravitationally bound to and in orbit of a star or star system. Generally speaking, such systems will include planets, and may include other objects such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals, and circumstellar disks. The Solar System is an example of a planetary system, in which Earth, seven other planets, and other celestial objects are bound to and revolve around the Sun. The term exoplanetary system is sometimes used in reference to planetary systems other than the Solar System. By convention planetary systems are named after their host, or parent, star, as is the case with the Solar System being named after "Sol" (Latin for sun).

As of 30 October 2025, there are 6,128 confirmed exoplanets in 4,584 planetary systems, with 1,017 systems having more than one planet. Debris disks are known to be common while other objects are more difficult to observe.

View the full Wikipedia page for Planetary system
↑ Return to Menu

Asteroid in the context of Cosmochemistry

Cosmochemistry (from Ancient Greek κόσμος (kósmos) 'universe' and χημεία (khēmeía) 'chemistry') or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System.

View the full Wikipedia page for Cosmochemistry
↑ Return to Menu

Asteroid in the context of Impact event

An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, as the impacting body is usually traveling at several kilometres per second (km/s), with a minimum impact speed of 11.2 km/s (25,054 mph; 40,320 km/h) for bodies striking Earth. While planetary atmospheres can mitigate some of these impacts through the effects of atmospheric entry, many large bodies retain sufficient energy to reach the surface and cause substantial damage. This results in the formation of impact craters and structures, shaping the dominant landforms found across various types of solid objects found in the Solar System. Their prevalence and ubiquity present the strongest empirical evidence of the frequency and scale of these events.

Impact events appear to have played a significant role in the evolution of the Solar System since its formation. Major impact events have significantly shaped Earth's history, and have been implicated in the formation of the Earth–Moon system. Interplanetary impacts have also been proposed to explain the retrograde rotation of Uranus and Venus. Impact events also appear to have played a significant role in the evolutionary history of life. Impacts may have helped deliver the building blocks for life (the panspermia theory relies on this premise). Impacts have been suggested as the origin of water on Earth. They have also been implicated in several mass extinctions. The prehistoric Chicxulub impact, 66 million years ago, is believed to be the cause not only of the Cretaceous–Paleogene extinction event but acceleration of the evolution of mammals, leading to their dominance and, in turn, setting in place conditions for the eventual rise of humans.

View the full Wikipedia page for Impact event
↑ Return to Menu

Asteroid in the context of Minor planet

According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term minor planet, but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs). In contrast to the eight official planets of the Solar System, all minor planets fail to clear their orbital neighborhood.

Minor planets include asteroids (near-Earth objects, Earth trojans, Mars trojans, Mars-crossers, main-belt asteroids and Jupiter trojans), as well as distant minor planets (Uranus trojans, Neptune trojans, centaurs and trans-Neptunian objects), most of which reside in the Kuiper belt and the scattered disc. As of October 2025, there are 1,472,966 known objects, divided into 875,150 numbered, with only one of them recognized as a dwarf planet (secured discoveries) and 597,816 unnumbered minor planets, with only five of those officially recognized as a dwarf planet.

View the full Wikipedia page for Minor planet
↑ Return to Menu

Asteroid in the context of C-type asteroid

C-type (carbonaceous /ˌkɑːrbəˈnʃəs/) asteroids are the most common variety, forming around 75% of known asteroids. They are volatile-rich and distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks and minerals. They have an average density of about 1.7 g/cm.

They lie most often at the outer edge of the asteroid belt, 3.5 au (520 million km; 330 million mi) from the Sun, where 80% of the asteroids are of this type, whereas only 40% of asteroids at 2 au (300 million km; 190 million mi) from the Sun are C-type. The proportion of C-types may actually be greater than this, since C-types are much darker (and hence less detectable) than most other asteroid types, except for D-types and others that lie mostly at the extreme outer edge of the asteroid belt.

View the full Wikipedia page for C-type asteroid
↑ Return to Menu