Arithmetic logic unit in the context of Primary memory


Arithmetic logic unit in the context of Primary memory

Arithmetic logic unit Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Arithmetic logic unit in the context of "Primary memory"


⭐ Core Definition: Arithmetic logic unit

In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs).

The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed (opcode); the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers.

↓ Menu
HINT:

In this Dossier

Arithmetic logic unit in the context of Central processing unit

A central processing unit (CPU), also called a central processor, main processor, or just processor, is the primary processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic and logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the fetching (from memory), decoding and execution (of instructions) by directing the coordinated operations of the ALU, registers, and other components. Modern CPUs devote a lot of semiconductor area to caches and instruction-level parallelism to increase performance and to CPU modes to support operating systems and virtualization.

View the full Wikipedia page for Central processing unit
↑ Return to Menu

Arithmetic logic unit in the context of Digital data storage

Computer data storage or digital data storage is the retention of digital data via technology consisting of computer components and recording media. Digital data storage is a core function and fundamental component of computers.

Generally, the faster and volatile storage components are referred to as "memory", while slower persistent components are referred to as "storage". This distinction was extended in the Von Neumann architecture, where the central processing unit (CPU) consists of two main parts: The control unit and the arithmetic logic unit (ALU). The former controls the flow of data between the CPU and memory, while the latter performs arithmetic and logical operations on data. In practice, almost all computers use a memory hierarchy, which puts memory close to the CPU and storage further away.

View the full Wikipedia page for Digital data storage
↑ Return to Menu

Arithmetic logic unit in the context of Combinational logic

In automata theory, combinational logic (also referred to as time-independent logic) is a type of digital logic that is implemented by Boolean circuits, where the output is a pure function of the present input only. This is in contrast to sequential logic, in which the output depends not only on the present input but also on the history of the input. In other words, sequential logic has memory while combinational logic does not.

Combinational logic is used in computer circuits to perform Boolean algebra on input signals and on stored data. Practical computer circuits normally contain a mixture of combinational and sequential logic. For example, the part of an arithmetic logic unit, or ALU, that does mathematical calculations is constructed using combinational logic. Other circuits used in computers, such as half adders, full adders, half subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders are also made by using combinational logic.

View the full Wikipedia page for Combinational logic
↑ Return to Menu

Arithmetic logic unit in the context of Opcode

In computing, an opcode (abbreviated from operation code) is an enumerated value that specifies the operation to be performed. Opcodes are employed in hardware devices such as arithmetic logic units (ALUs), central processing units (CPUs), and software instruction sets. In ALUs, the opcode is directly applied to circuitry via an input signal bus. In contrast, in CPUs, the opcode is the portion of a machine language instruction that specifies the operation to be performed.

View the full Wikipedia page for Opcode
↑ Return to Menu

Arithmetic logic unit in the context of Control unit

The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. A CU typically uses a binary decoder to convert coded instructions into timing and control signals that direct the operation of the other units (memory, arithmetic logic unit and input and output devices, etc.).

Most computer resources are managed by the CU. It directs the flow of data between the CPU and the other devices. John von Neumann included the control unit as part of the von Neumann architecture. In modern computer designs, the control unit is typically an internal part of the CPU with its overall role and operation unchanged since its introduction.

View the full Wikipedia page for Control unit
↑ Return to Menu

Arithmetic logic unit in the context of Instruction cycle

The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch–execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.

In simpler CPUs, the instruction cycle is executed sequentially, each instruction being processed before the next one is started. In most modern CPUs, the instruction cycles are instead executed concurrently, and often in parallel, through an instruction pipeline: the next instruction starts being processed before the previous instruction has finished, which is possible because the cycle is broken up into separate steps.

View the full Wikipedia page for Instruction cycle
↑ Return to Menu

Arithmetic logic unit in the context of 8-bit computing

In computer architecture, 8-bit integers or other data units are those that are 8 bits wide (1 octet). Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses (and thus address buses) for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors.

The term '8-bit' is also applied to the character sets that could be used on computers with 8-bit bytes, the best known being various forms of extended ASCII, including the ISO/IEC 8859 series of national character sets – especially Latin 1 for English and Western European languages.

View the full Wikipedia page for 8-bit computing
↑ Return to Menu

Arithmetic logic unit in the context of 16 bit

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits (2 octets) wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

A 16-bit register can store 2 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two most common representations, the range is 0 through 65,535 (2 − 1) for representation as an (unsigned) binary number, and −32,768 (−1 × 2) through 32,767 (2 − 1) for representation as two's complement. Since 2 is 65,536, a processor with 16-bit memory addresses can directly access 64 KiB (65,536 bytes) of byte-addressable memory. If a system uses segmentation with 16-bit segment offsets, more can be accessed.

View the full Wikipedia page for 16 bit
↑ Return to Menu

Arithmetic logic unit in the context of Analytical Engine

The analytical engine was a proposed digital mechanical general-purpose computer designed by the English mathematician and computer pioneer Charles Babbage. It was first described in 1837 as the successor to Babbage's difference engine, which was a design for a simpler mechanical calculator.

The analytical engine incorporated an arithmetic logic unit, control flow in the form of conditional branching and loops, and integrated memory, making it the first design for a general-purpose computer that could be described in modern terms as Turing-complete. In other words, the structure of the analytical engine was essentially the same as that which has dominated computer design in the electronic era. The analytical engine is one of the most successful achievements of Charles Babbage.

View the full Wikipedia page for Analytical Engine
↑ Return to Menu

Arithmetic logic unit in the context of Von Neumann architecture

The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the First Draft of a Report on the EDVAC, written by John von Neumann in 1945, describing designs discussed with John Mauchly and J. Presper Eckert at the University of Pennsylvania's Moore School of Electrical Engineering. The document describes a design architecture for an electronic digital computer made of "organs" that were later understood to have these components:

The attribution of the invention of the architecture to von Neumann is controversial, not least because Eckert and Mauchly had done a lot of the required design work and claim to have had the idea for stored programs long before discussing the ideas with von Neumann and Herman Goldstine.

View the full Wikipedia page for Von Neumann architecture
↑ Return to Menu

Arithmetic logic unit in the context of Asynchronous system

The primary focus of this article is asynchronous control in digital electronic systems. In a synchronous system, operations (instructions, calculations, logic, etc.) are coordinated by one, or more, centralized clock signals. An asynchronous system, in contrast, has no global clock. Asynchronous systems do not depend on strict arrival times of signals or messages for reliable operation. Coordination is achieved using event-driven architecture triggered by network packet arrival, changes (transitions) of signals, handshake protocols, and other methods.

View the full Wikipedia page for Asynchronous system
↑ Return to Menu