Address bus in the context of "16 bit"

Play Trivia Questions online!

or

Skip to study material about Address bus in the context of "16 bit"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Address bus in the context of 16 bit

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits (2 octets) wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

A 16-bit register can store 2 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two most common representations, the range is 0 through 65,535 (2 − 1) for representation as an (unsigned) binary number, and −32,768 (−1 × 2) through 32,767 (2 − 1) for representation as two's complement. Since 2 is 65,536, a processor with 16-bit memory addresses can directly access 64 KiB (65,536 bytes) of byte-addressable memory. If a system uses segmentation with 16-bit segment offsets, more can be accessed.

↓ Explore More Topics
In this Dossier

Address bus in the context of 8-bit computing

In computer architecture, 8-bit integers or other data units are those that are 8 bits wide (1 octet). Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses (and thus address buses) for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors.

The term '8-bit' is also applied to the character sets that could be used on computers with 8-bit bytes, the best known being various forms of extended ASCII, including the ISO/IEC 8859 series of national character sets – especially Latin 1 for English and Western European languages.

↑ Return to Menu