Antiquark in the context of "Pentaquark"

Play Trivia Questions online!

or

Skip to study material about Antiquark in the context of "Pentaquark"

Ad spacer

⭐ Core Definition: Antiquark

A quark (/ˈkwɔːrk, ˈkwɑːrk/ ) is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as fundamental forces (electromagnetism, gravitation, strong interaction, and weak interaction), as well as the only known particles whose electric charges are not integer multiples of the elementary charge.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Antiquark in the context of Strong interaction

In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, and also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force.

Most of the mass of a proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10 m (1 femtometer, slightly more than the radius of a nucleon), the strong force is approximately 100 times as strong as electromagnetism, 10 times as strong as the weak interaction, and 10 times as strong as gravitation.

↑ Return to Menu

Antiquark in the context of Meson

In particle physics, a meson (/ˈmzɒn, ˈmɛzɒn/) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few tenths of a nanosecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons.

Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are routinely produced artificially in cyclotrons or other particle accelerators in the collisions of protons, antiprotons, or other particles.

↑ Return to Menu

Antiquark in the context of Pion

In particle physics, a pion (/ˈp.ɒn/, PIE-on) or pi meson, denoted with the Greek letter pi (π), is any of three subatomic particles: π
, π
, and π
. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions π
and π
decaying after a mean lifetime of 26.033 nanoseconds (2.6033×10 seconds), and the neutral pion π
decaying after a much shorter lifetime of 85 attoseconds (8.5×10 seconds). Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays.

The exchange of virtual pions, along with vector, rho and omega mesons, provides an explanation for the residual strong force between nucleons. Pions are not produced in radioactive decay, but commonly are in high-energy collisions between hadrons. Pions also result from some matter–antimatter annihilation events. All types of pions are also produced in natural processes when high-energy cosmic-ray protons and other hadronic cosmic-ray components interact with matter in Earth's atmosphere. In 2013, the detection of characteristic gamma rays originating from the decay of neutral pions in two supernova remnants has shown that pions are produced copiously after supernovas, most probably in conjunction with production of high-energy protons that are detected on Earth as cosmic rays.

↑ Return to Menu

Antiquark in the context of Hagedorn temperature

The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quarkantiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom. However, if this phase is viewed as quarks instead, it becomes apparent that the matter has transformed into quark matter, which can be further heated.

The Hagedorn temperature, TH, is about 150 MeV/kB or about 1.7×10 K, little above the mass–energy of the lightest hadrons, the pion. Hagedorn was able not only to give a simple explanation for the thermodynamical aspect of high energy particle production, but also worked out a formula for the hadronic mass spectrum and predicted the limiting temperature for hot hadronic systems.

↑ Return to Menu

Antiquark in the context of Baryon number

In particle physics, the baryon number (B) is an additive quantum number of a system. It is defined aswhere is the number of quarks, and is the number of antiquarks. Baryons (three quarks) have B = +1, mesons (one quark, one antiquark) have B = 0, and antibaryons (three antiquarks) have B = −1. Exotic hadrons like pentaquarks (four quarks, one antiquark) and tetraquarks (two quarks, two antiquarks) are also classified as baryons and mesons depending on their baryon number. In the Standard Model B conservation is an accidental symmetry which means that it appears in the Standard Model but is often violated when going beyond it. Physics beyond the Standard Model theories that contain baryon number violation are, for example, Standard Model with extra dimensions, Supersymmetry, Grand Unified Theory and String theory.

↑ Return to Menu

Antiquark in the context of Exotic hadron

Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral.

Consistent with ordinary hadrons, exotic hadrons are classified as being either fermions, like ordinary baryons, or bosons, like ordinary mesons. According to this classification scheme, pentaquarks, containing five valence quarks, are exotic baryons, while tetraquarks (four valence quarks) and hexaquarks (six quarks, consisting of either a dibaryon or three quark-antiquark pairs) would be considered exotic mesons. Tetraquark and pentaquark particles are believed to have been observed and are being investigated; hexaquarks have not yet been confirmed as observed.

↑ Return to Menu

Antiquark in the context of Vector boson

In particle physics, a vector boson is a boson whose spin equals one. Vector bosons that are also elementary particles are gauge bosons, the force carriers of fundamental interactions. Some composite particles are vector bosons, for instance any vector meson (quark and antiquark). During the 1970s and 1980s, intermediate vector bosons (the W and Z bosons, which mediate the weak interaction) drew much attention in particle physics.

A pseudovector boson is a vector boson that has even parity, whereas "regular" vector bosons have odd parity. There are no fundamental pseudovector bosons, but there are pseudovector mesons.

↑ Return to Menu