Antigen in the context of "Memory B cell"

Play Trivia Questions online!

or

Skip to study material about Antigen in the context of "Memory B cell"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Antigen in the context of Cellular differentiation

Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. Metabolic composition, however, gets dramatically altered where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same genome.

A specialized type of differentiation, known as terminal differentiation, is of importance in some tissues, including vertebrate nervous system, striated muscle, epidermis and gut. During terminal differentiation, a precursor cell formerly capable of cell division permanently leaves the cell cycle, dismantles the cell cycle machinery and often expresses a range of genes characteristic of the cell's final function (e.g. myosin and actin for a muscle cell). Differentiation may continue to occur after terminal differentiation if the capacity and functions of the cell undergo further changes.

↑ Return to Menu

Antigen in the context of Serotype

A serotype or serovar is a distinct variation within a species of bacteria or virus or among immune cells of different individuals. These microorganisms, viruses, or cells are classified together based on their shared reactivity between their surface antigens and a particular antiserum, allowing the classification of organisms to a level below the species. A group of serovars with common antigens is called a serogroup or sometimes serocomplex.

Serotyping often plays an essential role in determining species and subspecies. The Salmonella genus of bacteria, for example, has been determined to have over 2600 serotypes. Vibrio cholerae, the species of bacteria that causes cholera, has over 200 serotypes, based on cell antigens. Only two of them have been observed to produce the potent enterotoxin that results in cholera: O1 and O139.

↑ Return to Menu

Antigen in the context of Antibodies

An antibody (Ab), or immunoglobulin (Ig), is a large protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that cause disease. Each individual antibody recognizes one or more specific antigens, and antigens (a portmanteau of "antibody generator") of virtually any size and chemical composition can be recognized. Each of the branching chains comprising the "Y" of an antibody contains a paratope (the antigen-binding site) that specifically binds to one particular epitope (a specific part of an antigen bound by the paratope) on an antigen, allowing the two molecules to bind together with precision. Using this mechanism, antibodies can effectively "tag" the antigen (or a microbe or an infected cell bearing such an antigen) for attack by cells of the immune system, or can neutralize it directly (for example, by blocking a part of a virus that is essential for its ability to invade a host cell).

Antibodies may be borne on the surface of an immune cell, as in a B cell receptor, or they may exist freely by being secreted into the extracellular space. The term antibody generally refers to the free (secreted) form, while the term immunoglobulin can refer to either forms. Since they are, broadly speaking, the same protein, the terms are often treated as synonymous.

↑ Return to Menu

Antigen in the context of Jawed fish

Gnathostomata (/ˌnæθˈstɒmətə/; from Ancient Greek: γνάθος (gnathos) 'jaw' + στόμα (stoma) 'mouth') are jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all extant vertebrates, including all living bony fishes (both ray-finned and lobe-finned, including their terrestrial tetrapod relatives) and cartilaginous fishes, as well as extinct prehistoric fish such as placoderms and acanthodians. Most gnathostomes have retained ancestral traits like true teeth, a stomach, and paired appendages (pectoral and pelvic fins, limbs, wings, etc.). Other traits are elastin, horizontal semicircular canal of the inner ear, myelinated neurons, and an adaptive immune system which has discrete lymphoid organs (spleen and thymus) and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

It is now assumed that Gnathostomata evolved from ancestors that already possessed two pairs of paired fins. Until recently these ancestors, known as antiarchs, were thought to have lacked pectoral or pelvic fins. In addition to this, some placoderms were shown to have a third pair of paired appendages, that had been modified to claspers in males and pelvic basal plates in females — a pattern not seen in any other vertebrate group. The jawless Osteostraci are generally considered the closest sister taxon of Gnathostomata.

↑ Return to Menu

Antigen in the context of Blood types

A blood type (also known as a blood group) is a classification of blood based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system. Some of these antigens are also present on the surface of other types of cells of various tissues. Several of these red blood cell surface antigens can stem from one allele (or an alternative version of a gene) and collectively form a blood group system.

Blood types are inherited and represent contributions from both parents of an individual. As of June 2025, a total of 48 human blood group systems are recognized by the International Society of Blood Transfusion (ISBT). The two most important blood group systems are ABO and Rh; they determine someone's blood type (A, B, AB, and O, with + or − denoting RhD status) for suitability in blood transfusion.

↑ Return to Menu

Antigen in the context of Immunization

Immunization, or immunisation, is the process by which an individual's immune system becomes fortified against an infectious agent (known as the immunogen). When this system is exposed to molecules that are foreign to the body, called non-self, it will orchestrate an immune response, and it will also develop the ability to quickly respond to a subsequent encounter because of immunological memory. This is a function of the adaptive immune system. Therefore, by exposing a human, or an animal, to an immunogen in a controlled way, its body can learn to protect itself: this is called active immunization. The most important elements of the immune system that are improved by immunization are the T cells, B cells, and the antibodies B cells produce. Memory B cells and memory T cells are responsible for a swift response to a second encounter with a foreign molecule. Passive immunization is direct introduction of these elements into the body, instead of production of these elements by the body itself.

Immunization happens in various ways, both in the wild and as done by human efforts in health care. Natural immunity is gained by those organisms whose immune systems succeed in fighting off a previous infection, if the relevant pathogen is one for which immunization is even possible. Natural immunity can have degrees of effectiveness (partial rather than absolute) and may fade over time (within months, years, or decades, depending on the pathogen). In health care, the main technique of artificial induction of immunity is vaccination, which is a major form of prevention of disease, whether by prevention of infection (pathogen fails to mount sufficient reproduction in the host), prevention of severe disease (infection still happens but is not severe), or both. Vaccination against vaccine-preventable diseases is a major relief of disease burden even though it usually cannot eradicate a disease. Vaccines against microorganisms that cause diseases can prepare the body's immune system, thus helping to fight or prevent an infection. The fact that mutations can cause cancer cells to produce proteins or other molecules that are known to the body forms the theoretical basis for therapeutic cancer vaccines. Other molecules can be used for immunization as well, for example in experimental vaccines against nicotine (NicVAX) or the hormone ghrelin in experiments to create an obesity vaccine.

↑ Return to Menu

Antigen in the context of Hypersensitivity

Hypersensitivity (also called hypersensitivity reaction) is an immune response characterized by mechanisms that cause significant tissue damage or physiological dysfunction, whether directed against pathogens, harmless environmental antigens, or self-antigens that is reproducible upon re-exposure to the antigen. While hypersensitivity mechanisms can sometimes serve protective functions (such as control of infectious diseases), they are distinguished by their capacity to cause collateral tissue damage that may exceed any protective benefit. Collectively, hypersensitivities are extremely common: hay fever affects about 1 in 10 people worldwide, asthma affects hundreds of millions, and about 1 in 12 people have an autoimmune disease.

In 1963, Philip George Houthem Gell and Robin Coombs introduced a systematic classification of the different types of hypersensitivity based on the types of antigens and immune responses involved. According to this system, known as the Gell and Coombs classification or Gell-Coombs's classification, there are four types of hypersensitivity:

↑ Return to Menu

Antigen in the context of Allergenic

An allergen is an otherwise harmless substance that triggers an allergic reaction in sensitive individuals by stimulating an immune response.

In technical terms, an allergen is an antigen that is capable of stimulating a type-I hypersensitivity reaction in atopic individuals through immunoglobulin E (IgE) responses. Most humans mount significant immunoglobulin E responses only as a defense against parasitic infections. However, some individuals may respond to many common environmental antigens. In atopic individuals, non-parasitic antigens stimulate inappropriate IgE production, leading to type I hypersensitivity.

↑ Return to Menu

Antigen in the context of Influenza A virus subtype H1N1

Influenza A virus subtype H1N1 (A/H1N1) is a subtype of influenza A virus (IAV). Some human-adapted strains of H1N1 are endemic in humans and are one cause of seasonal influenza (flu). Other strains of H1N1 are endemic in pigs (swine influenza) and in birds (avian influenza). Subtypes of IAV are defined by the combination of the antigenic hemagglutinin (H) and neuraminidase (N) proteins in the viral envelope; for example, "H1N1" designates an IAV subtype that has a type-1 H protein and a type-1 N protein.

All subtypes of IAV share a negative-sense, segmented RNA genome. Under rare circumstances, one strain of the virus can acquire genetic material through genetic reassortment from a different strain and thus evolve to acquire new characteristics, enabling it to evade host immunity and occasionally to jump from one species of host to another. Major outbreaks of H1N1 strains in humans include the 1918 Spanish flu pandemic, the 1977 Russian flu pandemic and the 2009 swine flu pandemic, all of which were caused by strains of A(H1N1) virus which are believed to have undergone genetic reassortment.

↑ Return to Menu