Salmonella in the context of "Serotype"

Play Trivia Questions online!

or

Skip to study material about Salmonella in the context of "Serotype"

Ad spacer

⭐ Core Definition: Salmonella

Salmonella is a genus of rod-shaped, (bacillus) Gram-negative bacteria of the family Enterobacteriaceae. The two known species of Salmonella are Salmonella enterica and Salmonella bongori. S. enterica is the type species and is further divided into six subspecies that include over 2,650 serotypes. Salmonella was named after Daniel Elmer Salmon (1850–1914), an American veterinary surgeon.

Salmonella species are non-spore-forming, predominantly motile enterobacteria with cell diameters between about 0.7 and 1.5 μm, lengths from 2 to 5 μm, and peritrichous flagella (all around the cell body, allowing them to move). They are chemotrophs, obtaining their energy from oxidation and reduction reactions, using organic sources. They are also facultative anaerobes, capable of generating adenosine triphosphate with oxygen ("aerobically") when it is available, or using other electron acceptors or fermentation ("anaerobically") when oxygen is not available.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Salmonella in the context of Serotype

A serotype or serovar is a distinct variation within a species of bacteria or virus or among immune cells of different individuals. These microorganisms, viruses, or cells are classified together based on their shared reactivity between their surface antigens and a particular antiserum, allowing the classification of organisms to a level below the species. A group of serovars with common antigens is called a serogroup or sometimes serocomplex.

Serotyping often plays an essential role in determining species and subspecies. The Salmonella genus of bacteria, for example, has been determined to have over 2600 serotypes. Vibrio cholerae, the species of bacteria that causes cholera, has over 200 serotypes, based on cell antigens. Only two of them have been observed to produce the potent enterotoxin that results in cholera: O1 and O139.

↓ Explore More Topics
In this Dossier

Salmonella in the context of Facultative anaerobes

A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent.

Some examples of facultatively anaerobic bacteria are Staphylococcus spp., Escherichia coli, Salmonella, Listeria spp., Shewanella oneidensis and Yersinia pestis. Certain eukaryotes are also facultative anaerobes, including pupfish, fungi such as Saccharomyces cerevisiae and many aquatic invertebrates such as nereid polychaetes.

↑ Return to Menu

Salmonella in the context of Typhoid

Typhoid fever, also known as typhoid, is a disease caused by Salmonella enterica serotype Typhi bacteria, also called Salmonella typhi. Symptoms vary from mild to severe, and usually begin six to 30 days after exposure. Often there is a gradual onset of a high fever over several days. This is commonly accompanied by weakness, abdominal pain, constipation, headaches, and mild vomiting. Some people develop a skin rash with rose colored spots. In severe cases, people may experience confusion. Without treatment, symptoms may last weeks or months. Diarrhea may be severe, but is uncommon. Other people may carry it without being affected, but are still contagious. Typhoid fever is a type of enteric fever, along with paratyphoid fever. Salmonella enterica Typhi is believed to infect and replicate only within humans.

Typhoid is caused by the bacterium Salmonella enterica subsp. enterica serovar Typhi growing in the intestines, Peyer's patches, mesenteric lymph nodes, spleen, liver, gallbladder, bone marrow and blood. Typhoid is spread by eating or drinking food or water contaminated with the feces of an infected person. Risk factors include limited access to clean drinking water and poor sanitation. Those who have not yet been exposed to it and ingest contaminated drinking water or food are most at risk for developing symptoms. Only humans can be infected; there are no known animal reservoirs. Salmonella typhi which causes typhoid fever is different from the other Salmonella bacteria that usually cause salmonellosis, a common type of food poisoning.

↑ Return to Menu

Salmonella in the context of Enterobacteriaceae

Enterobacteriaceae is a large family of Gram-negative bacteria. It includes over 30 genera and more than 100 species. Its classification above the level of family is still a subject of debate, but one classification places it in the order Enterobacterales of the class Gammaproteobacteria in the phylum Pseudomonadota. In 2016, the description and members of this family were emended based on comparative genomic analyses by Adeolu et al.

Enterobacteriaceae includes, along with many harmless symbionts, many of the more familiar pathogens, such as Salmonella, Escherichia coli, Klebsiella, and Shigella. Other disease-causing bacteria in this family include Enterobacter and Citrobacter. Members of the Enterobacteriaceae can be trivially referred to as enterobacteria or "enteric bacteria", as several members live in the intestines of animals. In fact, the etymology of the family is enterobacterium with the suffix to designate a family (aceae)—not after the genus Enterobacter (which would be "Enterobacteraceae")—and the type genus is Escherichia.

↑ Return to Menu

Salmonella in the context of Swarming motility

Swarming motility is a rapid (2–10 μm/s) and coordinated translocation of a bacterial population across solid or semi-solid surfaces, and is an example of bacterial multicellularity and swarm behaviour. Swarming motility was first reported by Jorgen Henrichsen and has been mostly studied in genus Serratia, Salmonella, Aeromonas, Bacillus, Yersinia, Pseudomonas, Proteus, Vibrio and Escherichia.

This multicellular behavior has been mostly observed in controlled laboratory conditions and relies on two critical elements: 1) the nutrient composition and 2) viscosity of culture medium (i.e. % agar). One particular feature of this type of motility is the formation of dendritic fractal-like patterns formed by migrating swarms moving away from an initial location. Although the majority of species can produce tendrils when swarming, some species like Proteus mirabilis do form concentric circles motif instead of dendritic patterns.

↑ Return to Menu

Salmonella in the context of Effects of climate change on agriculture

There are numerous effects of climate change on agriculture, many of which are making it harder for agricultural activities to provide global food security. Recent research has found that climate change is likely to exacerbate the existing environmental impacts of agriculture by lowering crop productivity, reducing the effectiveness of agrochemicals, increasing soil erosion and pest pressures, and thereby driving greater use of land, water and inputs.Rising temperatures and changing weather patterns often result in lower crop yields due to water scarcity caused by drought, heat waves and flooding. These effects of climate change can also increase the risk of several regions suffering simultaneous crop failures. Currently this risk is rare but if these simultaneous crop failures occur, they could have significant consequences for the global food supply. With a growing population and rapid urbanization, it is suggested that food production may increase by nearly 60% in the upcoming years. Verma, Krishnan (13 August 2024). "Climate change adaptation: Challenges for agricultural sustainability". Wiley. Wiley. Retrieved 30 October 2025.. Many pests and plant diseases are expected to become more prevalent or to spread to new regions. The world's livestock are expected to be affected by many of the same issues. These issues range from greater heat stress to animal feed shortfalls and the spread of parasites and vector-borne diseases.

The increased atmospheric CO2 level from human activities (mainly burning of fossil fuels) causes a CO2 fertilization effect. This effect offsets a small portion of the detrimental effects of climate change on agriculture. However, it comes at the expense of lower levels of essential micronutrients in the crops. Furthermore, CO2 fertilization has little effect on C4 crops like maize. On the coasts, some agricultural land is expected to be lost to sea level rise, while melting glaciers could result in less irrigation water being available. On the other hand, more arable land may become available as frozen land thaws. Other effects include erosion and changes in soil fertility and the length of growing seasons. Bacteria like Salmonella and fungi that produce mycotoxins grow faster as the climate warms. Their growth has negative effects on food safety, food loss and prices.

↑ Return to Menu