Air quality in the context of "Indoor air quality"

Play Trivia Questions online!

or

Skip to study material about Air quality in the context of "Indoor air quality"

Ad spacer

⭐ Core Definition: Air quality

Air pollution is the presence of substances in the air that are harmful to humans, other living beings or the environment. Pollutants can be gases, like ozone or nitrogen oxides, or small particles like soot and dust. Both outdoor and indoor air can be polluted.

Outdoor air pollution comes from burning fossil fuels for electricity and transport, wildfires, some industrial processes, waste management, demolition and agriculture. Indoor air pollution is often from burning firewood or agricultural waste for cooking and heating. Other sources of air pollution include dust storms and volcanic eruptions. Many sources of local air pollution, especially burning fossil fuels, also release greenhouse gases that cause global warming. However, air pollution may limit warming locally.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Air quality in the context of Indoor air quality

Indoor air quality (IAQ) is the air quality within buildings and structures. Poor indoor air quality due to indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked to sick building syndrome, respiratory issues, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates.

Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality. Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone. In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.

↓ Explore More Topics
In this Dossier

Air quality in the context of Urban heat island

Urban areas usually experience the urban heat island (UHI) effect; that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak, under block conditions, noticeably during the summer and winter.The main cause of the UHI effect is from the modification of land surfaces, while waste heat generated by energy usage is a secondary contributor. Urban areas occupy about 0.5% of the Earth's land surface but host more than half of the world's population. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas.

Monthly rainfall is greater downwind of cities, partially due to the UHI. Increases in heat within urban centers increases the length of growing seasons, decreases air quality by increasing the production of pollutants such as ozone, and decreases water quality as warmer waters flow into area streams and put stress on their ecosystems.

↑ Return to Menu

Air quality in the context of Public health

Public health is "the science and art of preventing disease, prolonging life and promoting health through the organized efforts and informed choices of society, organizations, public and private, communities and individuals". Analyzing the determinants of health of a population and the threats it faces is the basis for public health. The public can be as small as a handful of people or as large as a village or an entire city; in the case of a pandemic it may encompass several continents. The concept of health takes into account physical, psychological, and social well-being, among other factors.

Public health is an interdisciplinary field. For example, epidemiology, biostatistics, social sciences and management of health services are all relevant. Other important sub-fields include environmental health, community health, behavioral health, health economics, public policy, mental health, health education, health politics, occupational safety, disability, oral health, gender issues in health, and sexual and reproductive health. Public health, together with primary care, secondary care, and tertiary care, is part of a country's overall healthcare system. Public health is implemented through the surveillance of cases and health indicators, and through the promotion of healthy behaviors. Common public health initiatives include promotion of hand-washing and breastfeeding, delivery of vaccinations, promoting ventilation and improved air quality both indoors and outdoors, suicide prevention, smoking cessation, obesity education, increasing healthcare accessibility and distribution of condoms to control the spread of sexually transmitted diseases.

↑ Return to Menu

Air quality in the context of Green infrastructure

Green infrastructure or blue-green infrastructure refers to a network that provides the "ingredients" for solving urban and climatic challenges by building with nature. The main components of this approach include stormwater management, climate adaptation, the reduction of heat stress, increasing biodiversity, food production, better air quality, sustainable energy production, clean water, and healthy soils, as well as more human centered functions, such as increased quality of life through recreation and the provision of shade and shelter in and around towns and cities. Green infrastructure also serves to provide an ecological framework for social, economic, and environmental health of the surroundings. More recently scholars and activists have also called for green infrastructure that promotes social inclusion and equity rather than reinforcing pre-existing structures of unequal access to nature-based services.

Green infrastructure is considered a subset of "Sustainable and Resilient Infrastructure", which is defined in standards such as SuRe, the Standard for Sustainable and Resilient Infrastructure. However, green infrastructure can also mean "low-carbon infrastructure" such as renewable energy infrastructure and public transportation systems (See "low-carbon infrastructure"). Blue-green infrastructure can also be a component of "sustainable drainage systems" or "sustainable urban drainage systems" (SuDS or SUDS) designed to manage water quantity and quality, while providing improvements to biodiversity and amenity.

↑ Return to Menu

Air quality in the context of Numerical weather prediction

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

Mathematical models based on the same physical principles can be used to generate either short-term weather forecasts or longer-term climate predictions; the latter are widely applied for understanding and projecting climate change. The improvements made to regional models have allowed significant improvements in tropical cyclone track and air quality forecasts; however, atmospheric models perform poorly at handling processes that occur in a relatively constricted area, such as wildfires.

↑ Return to Menu

Air quality in the context of Aura (satellite)

Aura (EOS CH-1) is a multi-national NASA scientific research satellite in orbit around the Earth, studying the Earth's ozone layer, air quality and climate. It is the third major component of the Earth Observing System (EOS) following on Terra (launched 1999) and Aqua (launched 2002). Aura follows on from the Upper Atmosphere Research Satellite (UARS). Aura is a joint mission between NASA, the Netherlands, Finland, and the U.K. The Aura spacecraft is healthy and is expected to operate until at least 2028, possibly beyond.

The name "Aura" comes from the Latin word for air. The satellite was launched from Vandenberg Air Force Base on July 15, 2004, aboard a Delta II 7920-10L rocket.

↑ Return to Menu

Air quality in the context of Air filter

A particulate air filter is a device composed of fibrous, or porous materials which removes particulates such as smoke, dust, pollen, mold, viruses and bacteria from the air. Filters containing an adsorbent or catalyst such as charcoal (carbon) may also remove odors and gaseous pollutants such as volatile organic compounds or ozone. Air filters are used in applications where air quality is important, notably in building ventilation systems and in engines.

Some buildings, as well as aircraft and other human-made environments (e.g., satellites, and Space Shuttles) use foam, pleated paper, or spun fiberglass filter elements. Another method, air ionizers, use fibers or elements with a static electric charge, which attract dust particles. The air intakes of internal combustion engines and air compressors tend to use either paper, foam, or cotton filters. Oil bath filters have fallen out of favour aside from niche uses. The technology of air intake filters of gas turbines has improved significantly in recent years, due to improvements in the aerodynamics and fluid dynamics of the air-compressor part of the gas turbines.

↑ Return to Menu

Air quality in the context of Atmospheric dispersion modeling

Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that include algorithms to solve the mathematical equations that govern the pollutant dispersion. The dispersion models are used to estimate the downwind ambient concentration of air pollutants or toxins emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases. They can also be used to predict future concentrations under specific scenarios (i.e. changes in emission sources). Therefore, they are the dominant type of model used in air quality policy making. They are most useful for pollutants that are dispersed over large distances and that may react in the atmosphere. For pollutants that have a very high spatio-temporal variability (i.e. have very steep distance to source decay such as black carbon) and for epidemiological studies statistical land-use regression models are also used.

Dispersion models are important to governmental agencies tasked with protecting and managing the ambient air quality. The models are typically employed to determine whether existing or proposed new industrial facilities are or will be in compliance with the National Ambient Air Quality Standards (NAAQS) in the United States and other nations. The models also serve to assist in the design of effective control strategies to reduce emissions of harmful air pollutants. During the late 1960s, the Air Pollution Control Office of the U.S. EPA initiated research projects that would lead to the development of models for the use by urban and transportation planners. A major and significant application of a roadway dispersion model that resulted from such research was applied to the Spadina Expressway of Canada in 1971.

↑ Return to Menu