Tropical cyclone track forecasting in the context of "Numerical weather prediction"

Play Trivia Questions online!

or

Skip to study material about Tropical cyclone track forecasting in the context of "Numerical weather prediction"

Ad spacer

⭐ Core Definition: Tropical cyclone track forecasting

Tropical cyclone track forecasting involves predicting where a tropical cyclone is going to track over the next 120 hours (or five days), every 6 to 12 hours. The history of tropical cyclone track forecasting has evolved from a single-station approach to a comprehensive approach which uses a variety of meteorological tools and methods to make predictions. The weather of a particular location can show signs of the approaching tropical cyclone, such as increasing swell, increasing cloudiness, falling barometric pressure, increasing tides, squalls and heavy rainfall.

The forces that affect tropical cyclone steering are the higher-latitude westerlies, the subtropical ridge, and the beta effect caused by changes of the coriolis force within fluids such as the atmosphere. Accurate track predictions depend on determining the position and strength of high- and low-pressure areas, and predicting how those areas will migrate during the life of a tropical system. Computer forecast models are used to help determine this motion as far out as five to seven days in the future.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Tropical cyclone track forecasting in the context of Numerical weather prediction

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

Mathematical models based on the same physical principles can be used to generate either short-term weather forecasts or longer-term climate predictions; the latter are widely applied for understanding and projecting climate change. The improvements made to regional models have allowed significant improvements in tropical cyclone track and air quality forecasts; however, atmospheric models perform poorly at handling processes that occur in a relatively constricted area, such as wildfires.

↓ Explore More Topics
In this Dossier