Aileron in the context of "Fly-by-wire"

Play Trivia Questions online!

or

Skip to study material about Aileron in the context of "Fly-by-wire"

Ad spacer

⭐ Core Definition: Aileron

An aileron (French for 'little wing' or 'fin') is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. Ailerons are used in pairs to control the aircraft in roll (or movement around the aircraft's longitudinal axis), which normally results in a change in flight path due to the tilting of the lift vector. Movement around this axis is called rolling or banking.

Considerable controversy exists over credit for the invention of the aileron. The Wright brothers and Glenn Curtiss fought a years-long legal battle over the Wright patent of 1906, which described a method of wing-warping to achieve lateral control. The brothers prevailed in several court decisions which found that Curtiss's use of ailerons violated the Wright patent. Ultimately, the First World War compelled the U.S. Government to legislate a legal resolution. A much earlier aileron concept was patented in 1868 by British scientist Matthew Piers Watt Boulton, based on his 1864 paper On AΓ«rial Locomotion.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Aileron in the context of Fly-by-wire

Fly-by-wire (FBW) is a system that replaces the conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals, and flight control computers determine how to move the actuators at each control surface to provide the ordered response. Implementations either use mechanical flight control backup systems or else are fully electronic.

Improved fully fly-by-wire systems interpret the pilot's control inputs as a desired outcome and calculate the control surface positions required to achieve that outcome; this results in various combinations of rudder, elevator, aileron, flaps and engine controls in different situations using a closed feedback loop. The pilot may not be fully aware of all the control outputs acting to affect the outcome, only that the aircraft is reacting as expected. The fly-by-wire computers act to stabilize the aircraft and adjust the flying characteristics without the pilot's involvement, and to prevent the pilot from operating outside of the aircraft's safe performance envelope.

↓ Explore More Topics
In this Dossier

Aileron in the context of Steering

Steering is the control of the direction of motion or the components that enable its control. Steering is achieved through various arrangements, among them ailerons for airplanes, rudders for boats, cylic tilting of rotors for helicopters, and many more.

↑ Return to Menu

Aileron in the context of Centre stick

A centre stick (spelled center stick in American English), or simply control stick, is an aircraft cockpit arrangement where the control column (or joystick) is located in the center of the cockpit either between the pilot's legs or between the pilots' positions. Since the throttle controls are typically located to the left of the pilot, the right hand is used for the stick, although left-hand or both-hands operation is possible if required.

The centre stick is a part of an aircraft's flight control system and is typically linked to its ailerons and elevators, or alternatively to its elevons, by control rods or control cables on basic aircraft. On heavier, faster, more advanced aircraft the centre stick may also control power-assist modules. Modern aircraft centre sticks are also usually equipped with a number of electrical control switches within easy finger reach, in order to reduce the pilot's workload.

↑ Return to Menu

Aileron in the context of Vortex generator

A vortex generator (VG) is an aerodynamic device, consisting of a small vane usually attached to a lifting surface (or airfoil, such as an aircraft wing) or a rotor blade of a wind turbine. VGs may also be attached to some part of an aerodynamic vehicle such as an aircraft fuselage or a car. When the airfoil or the body is in motion relative to the air, the VG creates a vortex, which, by removing some part of the slow-moving boundary layer in contact with the airfoil surface, delays local flow separation and aerodynamic stalling, thereby improving the effectiveness of wings and control surfaces, such as flaps, elevators, ailerons, and rudders.

↑ Return to Menu

Aileron in the context of Flap (aircraft)

A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.

The flaps installed on most aircraft are partial-span flaps; spanwise from near the wing root to the inboard end of the ailerons. When partial-span flaps are extended they alter the spanwise lift distribution on the wing by causing the inboard half of the wing to supply an increased proportion of the lift, and the outboard half to supply a reduced proportion of the lift. Reducing the proportion of the lift supplied by the outboard half of the wing is accompanied by a reduction in the angle of attack on the outboard half. This is beneficial because it increases the margin above the stall of the outboard half, maintaining aileron effectiveness and reducing the likelihood of asymmetric stall, and spinning. The ideal lift distribution across a wing is elliptical, and extending partial-span flaps causes a significant departure from the elliptical. This increases lift-induced drag which can be beneficial during approach and landing because it allows the aircraft to descend at a steeper angle.

↑ Return to Menu

Aileron in the context of Aircraft principal axes

An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail. The axes are alternatively designated as vertical, lateral (or transverse), and longitudinal respectively. These axes move with the vehicle and rotate relative to the Earth along with the craft. These definitions were analogously applied to spacecraft when the first crewed spacecraft were designed in the late 1950s.

These rotations are produced by torques (or moments) about the principal axes. On an aircraft, these are intentionally produced by means of moving control surfaces, which vary the distribution of the net aerodynamic force about the vehicle's center of gravity. Elevators (moving flaps on the horizontal tail) produce pitch, a rudder on the vertical tail produces yaw, and ailerons (flaps on the wings that move in opposing directions) produce roll. On a spacecraft, the movements are usually produced by a reaction control system consisting of small rocket thrusters used to apply asymmetrical thrust on the vehicle.

↑ Return to Menu

Aileron in the context of Flight control surfaces

Flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. The primary function of these is to control the aircraft's movement along the three axes of rotation. Flight control surfaces are generally operated by dedicated aircraft flight control systems.

Development of an effective set of flight control surfaces was a critical advance in the history of development of aircraft. Early efforts at fixed-wing aircraft design succeeded in generating sufficient lift to get the aircraft off the ground, however with limited control. The development of effective flight controls allowed stable flight.

↑ Return to Menu