Actuators in the context of "Spacecraft attitude control"

Play Trivia Questions online!

or

Skip to study material about Actuators in the context of "Spacecraft attitude control"




⭐ Core Definition: Actuators

An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system (called an actuating system). The effect is usually produced in a controlled way. An actuator translates a stimulus such as an input signal into the required form of mechanical energy. It is a type of transducer. In simple terms, it is a "mover".

An actuator requires a control device (which provides control signal) and a source of energy. The control signal is relatively low in energy and may be voltage, electric current, pneumatic, or hydraulic fluid pressure, or even human power. In the electric, hydraulic, and pneumatic sense, it is a form of automation or automatic control.

↓ Menu

👉 Actuators in the context of Spacecraft attitude control

Spacecraft attitude control is the process of controlling the orientation of a spacecraft (vehicle or satellite) with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

Controlling vehicle attitude requires actuators to apply the torques needed to orient the vehicle to a desired attitude, and algorithms to command the actuators based on the current attitude and specification of a desired attitude.

↓ Explore More Topics
In this Dossier

Actuators in the context of Animatronics

An animatronic is a puppet controlled electronically to move in a fluent way. Animatronics are the modern adaptation of the automaton and are often used for the portrayal of characters in films, video games, and theme park attractions.

Animatronics are a multidisciplinary field integrating puppetry, anatomy and mechatronics. Animatronic figures can be implemented with both computer and human control, including teleoperation. Motion actuators are often used to imitate muscle movements and create realistic motions. Figures are usually encased in body shells and flexible skins made of hard or soft plastic materials and finished with colors, hair, feathers and other components to make them more lifelike. Animatronics stem from a long tradition of mechanical automata powered by hydraulics, pneumatics and clockwork.

↑ Return to Menu

Actuators in the context of Fluid power

Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics (using a liquid such as mineral oil or water) and pneumatics (using a gas such as compressed air or other gases). Although steam is also a fluid, steam power is usually classified separately from fluid power (implying hydraulics or pneumatics). Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.

Fluid power systems perform work by a pressurized fluid bearing directly on a piston in a cylinder or in a fluid motor. A fluid cylinder produces a force resulting in linear motion, whereas a fluid motor produces torque resulting in rotary motion. Within a fluid power system, cylinders and motors (also called actuators) do the desired work. Control components such as valves regulate the system.

↑ Return to Menu

Actuators in the context of Supervisory control and data acquisition

Supervisory control and data acquisition (SCADA) is a control system architecture comprising computers, networked data communications and graphical user interfaces for high-level supervision of machines and processes. It also covers sensors and other devices, such as programmable logic controllers, also known as a distributed control system (DCS), which interface with process plant or machinery.

The operator interfaces, which enable monitoring and the issuing of process commands, such as controller setpoint changes, are handled through the SCADA computer system. The subordinated operations, e.g. the real-time control logic or controller calculations, are performed by networked modules connected to the field sensors and actuators.

↑ Return to Menu

Actuators in the context of Smart materials

Smart materials, also called intelligent or responsive materials, are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, moisture, electric or magnetic fields, light, temperature, pH, or chemical compounds. Smart materials are the basis of many applications, including sensors and actuators, or artificial muscles, particularly as electroactive polymers (EAPs).

↑ Return to Menu