Xenoturbella in the context of "Nerve net"

Play Trivia Questions online!

or

Skip to study material about Xenoturbella in the context of "Nerve net"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Xenoturbella in the context of Nerve net

A nerve net consists of interconnected neurons lacking a brain or any form of cephalization. While organisms with bilateral body symmetry are normally associated with a condensation of neurons or, in more advanced forms, a central nervous system, organisms with radial symmetry are associated with nerve nets, and are found in members of the Ctenophora, Cnidaria, and Echinodermata phyla, all of which are found in marine environments. In the Xenacoelomorpha, a phylum of bilaterally symmetrical animals, members of the subphylum Xenoturbellida also possess a nerve net. Nerve nets can provide animals with the ability to sense objects through the use of the sensory neurons within the nerve net.

It also exists in several other phyla, like chordates, annelids and flatworms, but then always alongside longitudinal nerve(s) and/or a brain.

↓ Explore More Topics
In this Dossier

Xenoturbella in the context of Statocyst

The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, cnidarians, ctenophorans, echinoderms, cephalopods, crustaceans, ,Proseriata and Catenulida(both are taxonomic groups of flatworms),and gastropods, A similar structure is also found in Xenoturbella. The statocyst consists of a sac-like structure containing a mineralised mass (statolith) and numerous innervated sensory hairs (setae). The statolith's inertia causes it to push against the setae when the animal accelerates. Deflection of setae by the statolith in response to gravity activates neurons, providing feedback to the animal on change in orientation and allowing balance to be maintained.

In other words, the statolith shifts as the animal moves. Any movement large enough to throw the organism off balance causes the statolith to brush against tiny bristles which in turn send a message to the brain to correct its balance.

↑ Return to Menu

Xenoturbella in the context of Turbellaria

The Turbellaria are one of the traditional sub-divisions of the phylum Platyhelminthes (flatworms), and include all the sub-groups that are not exclusively parasitic. There are about 4,500 species, which range from 1 mm (0.039 in) to large freshwater forms more than 500 mm (20 in) long or terrestrial species like Bipalium kewense which can reach 600 mm (24 in) in length. All the larger forms are flat with ribbon-like or leaf-like shapes, since their lack of respiratory and circulatory systems means that they have to rely on diffusion for internal transport of metabolites. However, many of the smaller forms are round in cross section. Most are predators, and all live in water or in moist terrestrial environments. Most forms reproduce sexually and with few exceptions all are simultaneous hermaphrodites.

The Acoelomorpha and the genus Xenoturbella were formerly included in the Turbellaria, but are no longer regarded as Platyhelminthes. All the exclusively parasitic Platyhelminthes form a monophyletic group Neodermata, and it is agreed that these are descended from one small sub-group within the free-living Platyhelminthes. Hence the "Turbellaria" as traditionally defined are paraphyletic.

↑ Return to Menu