Wilhelm Röntgen in the context of "X-ray"

⭐ In the context of X-ray discovery, Wilhelm Röntgen’s decision to name the phenomenon ‘X-radiation’ primarily reflected what?

Ad spacer

⭐ Core Definition: Wilhelm Röntgen

Wilhelm Conrad Röntgen (/ˈrɛntɡən, ˈrʌnt-/ RENT-guhn, RUHNT-; German: [ˈvɪlhɛlm ˈʁœntɡən] ; 27 March 1845 – 10 February 1923), sometimes transliterated as Roentgen, was a German experimental physicist who produced and detected electromagnetic radiation in a wavelength range known as X-rays. For this discovery, he became the first recipient of the Nobel Prize in Physics in 1901.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Wilhelm Röntgen in the context of X-ray

An X-ray is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ranging from 10 nanometers to 10 picometers, corresponding to frequencies in the range of 30 petahertz to 30 exahertz (3×10 Hz to 3×10 Hz) and photon energies in the range of 100 eV to 100 keV, respectively.

X-rays were discovered in 1895 by the German scientist Wilhelm Conrad Röntgen, who named it X-radiation to signify an unknown type of radiation.

↓ Explore More Topics
In this Dossier

Wilhelm Röntgen in the context of Scheelite

Scheelite is a calcium tungstate mineral with the chemical formula CaWO4. It is an important ore of tungsten (wolfram). Scheelite is originally named after Swedish chemist Carl Wilhelm Scheele (1742–1786). Well-formed crystals are sought by collectors and are occasionally fashioned into gemstones when suitably free of flaws. Scheelite has been synthesized using the Czochralski process; the material produced may be used to imitate diamond, as a scintillator, or as a solid-state lasing medium. It was also used in radium paint in the same fashion as was zinc sulphide, and Thomas Edison invented a fluoroscope with a calcium tungstate-coated screen, making the images six times brighter than those with barium platinocyanide; the latter chemical allowed Röntgen to discover X-rays in early November 1895. The semi-precious stone marketed as 'blue scheelite' is actually a rock type consisting mostly of calcite and dolomite, with occasional traces of yellow-orange scheelite.

↑ Return to Menu

Wilhelm Röntgen in the context of Roentgenium

Roentgenium (German: [ʁœntˈɡeːni̯ʊm] ) is a synthetic chemical element; it has symbol Rg and atomic number 111. It is extremely radioactive and can only be created in a laboratory. The most stable known isotope, roentgenium-282, has a half-life of 130 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in December 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It is named after the physicist Wilhelm Röntgen (also spelled Roentgen), who discovered X-rays. Only a few roentgenium atoms have ever been synthesized, and they have no practical application.

In the periodic table, it is a d-block transactinide element. It is a member of the 7th period and is placed in the group 11 elements, although no chemical experiments have been carried out to confirm that it behaves as the heavier homologue to gold in group 11 as the ninth member of the 6d series of transition metals. Roentgenium is calculated to have similar properties to its lighter homologues, copper, silver, and gold, although it may show some differences from them.

↑ Return to Menu

Wilhelm Röntgen in the context of ROSAT

ROSAT (short for Röntgensatellit; in German X-rays are called Röntgenstrahlen, in honour of Wilhelm Röntgen) was a German Aerospace Center-led satellite X-ray telescope, with instruments built by West Germany, the United Kingdom and the United States. It was launched on 1 June 1990, on a Delta II rocket from Cape Canaveral, on what was initially designed as an 18-month mission, with provision for up to five years of operation. ROSAT operated for over eight years, finally shutting down on 12 February 1999.

In February 2011, it was reported that the 2,400 kg (5,291 lb) satellite was unlikely to burn up entirely while re-entering the Earth's atmosphere due to the large amount of ceramics and glass used in construction. Parts as heavy as 400 kg (882 lb) could impact the surface. ROSAT eventually re-entered the Earth's atmosphere on 23 October 2011 over the Bay of Bengal.

↑ Return to Menu