Whole blood in the context of "Blood fractionation"

Play Trivia Questions online!

or

Skip to study material about Whole blood in the context of "Blood fractionation"

Ad spacer

⭐ Core Definition: Whole blood

Whole blood (WB) is human blood from a standard blood donation. It is used in the treatment of hemorrhagic shock, in exchange transfusion, and when people donate blood to themselves (autologous transfusion). One unit of whole blood (approximately 450 mL) increases hemoglobin levels by about 10 g/L. Cross matching is typically done before the blood is given. It is either given intravenously or through Intraosseous infusion.

Side effects include red blood cell breakdown, high blood potassium, infection, volume overload, lung injury, and allergic reactions such as anaphylaxis. Whole blood is made up of red blood cells, white blood cells, platelets, and blood plasma. It is best within a day of collection; however, it can be stored for up to three weeks if refrigerated (1-6 °C). The blood is typically combined with an anticoagulant and preservative during the collection process.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Whole blood in the context of Biologic medical product

A biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biopharmaceuticals can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues. They (or their precursors or components) are isolated from living sources—human, animal, plant, fungal, or microbial. They can be used in both human and animal medicine.

Terminology surrounding biopharmaceuticals varies between groups and entities, with different terms referring to different subsets of therapeutics within the general biopharmaceutical category. The term biologics is often used more restrictively to mean biopharmaceuticals that are produced using recombinant DNA technology. Some regulatory agencies use the terms biological medicinal products or therapeutic biological product to refer specifically to engineered macromolecular products like protein- and nucleic acid-based drugs, distinguishing them from products like blood, blood components, or vaccines, which are usually extracted directly from a biological source. Biopharmaceutics is pharmaceutics that works with biopharmaceuticals. Biopharmacology is the branch of pharmacology that studies biopharmaceuticals. Specialty drugs, a recent classification of pharmaceuticals, are high-cost drugs that are often biologics. The European Medicines Agency uses the term advanced therapy medicinal products (ATMPs) for medicines for human use that are "based on genes, cells, or tissue engineering", including gene therapy medicines, somatic-cell therapy medicines, tissue-engineered medicines, and combinations thereof. Within EMA contexts, the term advanced therapies refers specifically to ATMPs, although that term is rather nonspecific outside those contexts.

↑ Return to Menu

Whole blood in the context of Blood transfusion

Blood transfusion is the process of transferring blood products into a person's circulation intravenously. Transfusions are used for various medical conditions to replace lost components of the blood. Early transfusions used whole blood, but modern medical practice commonly uses only components of the blood, such as red blood cells, plasma, platelets, and other clotting factors. White blood cells are transfused only in very rare circumstances, since granulocyte transfusion has limited applications. Whole blood has come back into use in the trauma setting.

Red blood cells (RBC) contain hemoglobin and supply the cells of the body with oxygen. White blood cells are not commonly used during transfusions, but they are part of the immune system and also fight infections. Plasma is the "yellowish" liquid part of blood, which acts as a buffer and contains proteins and other important substances needed for the body's overall health. Platelets are involved in blood clotting, preventing the body from bleeding. Before these components were known, doctors believed that blood was homogeneous. Because of this scientific misunderstanding, many patients died because of incompatible blood transferred to them.

↑ Return to Menu

Whole blood in the context of Blood plasma

Blood plasma is a light amber-colored liquid component of blood in which blood cells are absent, but which contains proteins and other constituents of whole blood in suspension. It makes up about 55% of the body's total blood volume. It is the intravascular part of extracellular fluid (all body fluid outside cells). It is mostly water (up to 95% by volume), and contains important dissolved proteins (6–8%; e.g., serum albumins, globulins, and fibrinogen), glucose, clotting factors, electrolytes (Na
, Ca
, Mg
, HCO3, Cl
, etc.), hormones, carbon dioxide (plasma being the main medium for excretory product transportation), and oxygen. It plays a vital role in an intravascular osmotic effect that keeps electrolyte concentration balanced and protects the body from infection and other blood-related disorders.

Blood plasma can be separated from whole blood through blood fractionation, by adding an anticoagulant to a tube filled with blood, which is spun in a centrifuge until the blood cells fall to the bottom of the tube. The blood plasma is then poured or drawn off. For point-of-care testing applications, plasma can be extracted from whole blood via filtration or via agglutination to allow for rapid testing of specific biomarkers. Blood plasma has a density of approximately 1,025 kg/m (1.025 g/ml). Blood serum is blood plasma without clotting factors. Plasmapheresis is a medical therapy that involves blood plasma extraction, treatment, and reintegration.

↑ Return to Menu

Whole blood in the context of Newborn screening

Newborn screening (NBS) is a public health program of screening in infants shortly after birth for conditions that are treatable, but not clinically evident in the newborn period. The goal is to identify infants at risk for these conditions early enough to confirm the diagnosis and provide intervention that will alter the clinical course of the disease and prevent or ameliorate the clinical manifestations. NBS started with the discovery that the amino acid disorder phenylketonuria (PKU) could be treated by dietary adjustment, and that early intervention was required for the best outcome. Infants with PKU appear normal at birth, but are unable to metabolize the essential amino acid phenylalanine, resulting in irreversible intellectual disability. In the 1960s, Robert Guthrie developed a simple method using a bacterial inhibition assay that could detect high levels of phenylalanine in blood shortly after a baby was born. Guthrie also pioneered the collection of blood on filter paper which could be easily transported, recognizing the need for a simple system if the screening was going to be done on a large scale. Newborn screening around the world is still done using similar filter paper. NBS was first introduced as a public health program in the United States in the early 1960s, and has expanded to countries around the world.

Screening programs are often run by state or national governing bodies with the goal of screening all infants born in the jurisdiction for a defined panel of treatable disorders. The number of diseases screened for is set by each jurisdiction, and can vary greatly. Most NBS tests are done by measuring metabolites or enzyme activity in whole blood samples collected on filter paper. Bedside tests for hearing loss using automated auditory brainstem response and congenital heart defects using pulse oximetry are included in some NBS programs. Infants who screen positive undergo further testing to determine if they are truly affected with a disease or if the test result was a false positive. Follow-up testing is typically coordinated between geneticists and the infant's pediatrician or primary care physician.

↑ Return to Menu

Whole blood in the context of Blood donation

A blood donation occurs when a person voluntarily has blood drawn and used for transfusions and/or made into blood products and biopharmaceutical medications by a process called fractionation (separation of whole blood components). A donation may be of whole blood, or of specific components directly (apheresis). Blood banks often participate in the collection process as well as the procedures that follow it.

In the developed world, most blood donors are unpaid volunteers who donate blood for a community supply. In some countries, established supplies are limited and donors usually give blood when family or friends need a transfusion (directed donation). Many donors donate for several reasons, such as a form of charity, general awareness regarding the demand for blood, increased confidence in oneself, helping a personal friend or relative, and social pressure. Despite the many reasons that people donate, not enough potential donors actively donate. However, this is reversed during disasters when blood donations increase, often creating an excess supply that will have to be later discarded. In countries that allow paid donation some people are paid, and in some cases there are incentives other than money such as paid time off from work. People can also have blood drawn for their own future use (autologous donation). Donating is relatively safe, but some donors have bruising where the needle is inserted or may feel faint.

↑ Return to Menu

Whole blood in the context of Blood product

A blood product is any therapeutic substance prepared from blood, usually human blood; in some medicolegal contexts, the term refers specifically to human-blood-derived products. Blood products include whole blood, blood components, and blood plasma derivatives. Blood components include red blood cell concentrates or suspensions; platelets produced from whole blood or via apheresis; granulocytes; fresh frozen plasma; cryoprecipitates; antisera; and others. Some products for topical use, such as serum eye drops, have also been recently classified as blood components. Plasma derivatives are plasma proteins prepared under pharmaceutical manufacturing conditions, including: albumin; coagulation factor concentrates; and immunoglobulins.

Human blood and blood products come from blood donation, which can be from one person to another or from a person to themselves (such as when saving one's own blood for use after an upcoming surgical procedure).

↑ Return to Menu

Whole blood in the context of Fresh plasma

Fresh frozen plasma (FFP) is a blood product made from the liquid portion of whole blood. It is used to treat conditions in which there are low blood clotting factors (INR > 1.5) or low levels of other blood proteins. It may also be used as the replacement fluid in plasma exchange. Using ABO compatible plasma, while not required, may be recommended. Use as a volume expander is not recommended. It is administered by slow injection into a vein.

Side effects include nausea and itchiness. Rarely there may be allergic reactions, blood clots, or infections. It is unclear if use during pregnancy or breastfeeding is safe for the baby. Greater care should be taken in people with protein S deficiency, IgA deficiency, or heart failure. Fresh frozen plasma is made up of a complex mixture of water, proteins, carbohydrates, fats, and vitamins. When frozen it lasts about a year.

↑ Return to Menu