Water treatment in the context of "Sedimentation (water treatment)"

Play Trivia Questions online!

or

Skip to study material about Water treatment in the context of "Sedimentation (water treatment)"




⭐ Core Definition: Water treatment

Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.

↓ Menu

👉 Water treatment in the context of Sedimentation (water treatment)

The physical process of sedimentation (the act of depositing sediment) has applications in water treatment, whereby gravity acts to remove suspended solids from water. Solid particles entrained by the turbulence of moving water may be removed naturally by sedimentation in the still water of lakes and oceans. Settling basins are ponds constructed for the purpose of removing entrained solids by sedimentation. Clarifiers are tanks built with mechanical means for continuous removal of solids being deposited by sedimentation; however, clarification does not remove dissolved solids.

↓ Explore More Topics
In this Dossier

Water treatment in the context of Sludge

Sludge (possibly from Middle English slutch 'mud, mire', or some dialect related to slush) is a semi-solid slurry that can be produced from a range of industrial processes, from water treatment, wastewater treatment or on-site sanitation systems. It can be produced as a settled suspension obtained from conventional drinking water treatment, as sewage sludge from wastewater treatment processes or as fecal sludge from pit latrines and septic tanks. The term is also sometimes used as a generic term for solids separated from suspension in a liquid; this soupy material usually contains significant quantities of interstitial water (between the solid particles). Sludge can consist of a variety of particles, such as animal manure.

Industrial wastewater treatment plants produce solids that are also referred to as sludge. This can be generated from biological or physical-chemical processes.

↑ Return to Menu

Water treatment in the context of Stainless steel

Stainless steel is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Alternatively, it is known as inox (an abbreviation of the French term inoxydable, meaning non-oxidizable), corrosion-resistant steel (CRES), Nirosta (an abbreviation of the German term nichtrostender Stahl) or rustless steel. Stainless steel's resistance to corrosion comes from its chromium content of 10.5% or more, which forms a passive film that protects the material and can self-heal when exposed to oxygen. It can be further alloyed with elements like molybdenum, carbon, nickel and nitrogen to enhance specific properties for various applications.

The alloy's properties, such as luster and resistance to corrosion, are useful in many applications. Stainless steel can be rolled into sheets, plates, bars, wire, and tubing. These can be used in cookware, cutlery, surgical instruments, major appliances, vehicles, construction material in large buildings, industrial equipment (e.g., in paper mills, chemical plants, water treatment), and storage tanks and tankers for chemicals and food products. Some grades are also suitable for forging and casting.

↑ Return to Menu

Water treatment in the context of Water quality

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and often determines supply options.

↑ Return to Menu

Water treatment in the context of Raw water

Raw water is water found in the environment that has not been treated and does not have any of its minerals, ions, particles, bacteria, or parasites removed. Raw water includes rainwater, ground water, water from infiltration wells, and water from bodies like lakes and rivers.

Raw water is generally unsafe for human consumption due to the presence of contaminants. A major health problem in some developing countries is use of raw water for drinking and cooking.

↑ Return to Menu

Water treatment in the context of Iron(III) chloride

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms, which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agents. It is used as a water cleaner and as an etchant for metals.

↑ Return to Menu

Water treatment in the context of Water distribution system

A water distribution system is a part of water supply network with components that carry potable water from a centralized treatment plant or wells to consumers to satisfy residential, commercial, industrial and fire fighting requirements.

↑ Return to Menu

Water treatment in the context of Detroit Water and Sewerage Department

The Detroit Water and Sewerage Department (DWSD) is a public utility that provides water and sewerage services for Detroit, Michigan and owns the assets that provide water and sewerage services to 126 other communities in seven counties. It is one of the largest water and sewer systems in the United States. In 2000, the utility utilized five water treatment plants using water from the Detroit River and Lake Huron. In mid 2014, the DWSD had acquired significant debt and delinquent accounts, and talks of privatization were occurring. As of January 1, 2016, under the terms of the City of Detroit's municipal bankruptcy the Great Lakes Water Authority (GLWA) was created with a $50 million annual lease agreement to the City of Detroit for 40 years, while the DWSD bifurcated to focus its services specifically on the water and sewer customers within only the city of Detroit.

↑ Return to Menu

Water treatment in the context of Stormwater harvesting

Stormwater harvesting or stormwater reuse is the collection, accumulation, treatment or purification, and storage of stormwater for its eventual reuse. While rainwater harvesting collects precipitation primarily from rooftops, stormwater harvesting deals with collection of runoff from creeks, gullies, ephemeral streams and underground conveyance. It can also include catchment areas from developed surfaces, such as roads or parking lots, or other urban environments such as parks, gardens and playing fields.

Water that comes into contact with impervious surfaces, or saturated surfaces incapable of absorbing more water, is termed surface runoff. As the surface runoff travels greater distance over impervious surfaces it often becomes contaminated and collects an increasing amount of pollutants. A main challenge of stormwater harvesting is the removal of pollutants in order to make this water available for reuse.

↑ Return to Menu