Water potential in the context of Transpiration stream


Water potential in the context of Transpiration stream

Water potential Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Water potential in the context of "Transpiration stream"


⭐ Core Definition: Water potential

Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ.

Water potential integrates a variety of different potential drivers of water movement, which may operate in the same or different directions. Within complex biological systems, many potential factors may be operating simultaneously. For example, the addition of solutes lowers the potential (negative vector), while an increase in pressure increases the potential (positive vector). If the flow is not restricted, water will move from an area of higher water potential to an area that is lower potential. A common example is water with dissolved salts, such as seawater or the fluid in a living cell. These solutions have negative water potential, relative to the pure water reference. With no restriction on flow, water will move from the locus of greater potential (pure water) to the locus of lesser (the solution); flow proceeds until the difference in potential is equalized or balanced by another water potential factor, such as pressure or elevation.

↓ Menu
HINT:

👉 Water potential in the context of Transpiration stream

In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/apoplast-interface of the substomatal cavity. It is driven by capillary action and in some plants by root pressure. The main driving factor is the difference in water potential between the soil and the substomatal cavity caused by transpiration.

↓ Explore More Topics
In this Dossier

Water potential in the context of Soil matrix

The soil matrix is the solid phase of soils, and comprise the solid particles that make up soils. Soil particles can be classified by their chemical composition (mineralogy) as well as their size. The particle-size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, but the mineralogy of those particles can strongly modify those properties. The mineralogy of the finest soil particles, clay, is especially important.

View the full Wikipedia page for Soil matrix
↑ Return to Menu

Water potential in the context of Curing (food preservation)

Curing is any of various food preservation and flavoring processes of foods such as meat, fish and vegetables, by the addition of salt, with the aim of drawing moisture out of the food by the process of osmosis. Because curing increases the solute concentration in the food and hence decreases its water potential, the food becomes inhospitable for the microbe growth that causes food spoilage. Curing can be traced back to antiquity, and was the primary method of preserving meat and fish until the late 19th century. Dehydration was the earliest form of food curing. Many curing processes also involve smoking, spicing, cooking, or the addition of combinations of sugar, nitrate, and nitrite.

Meat preservation in general (of meat from livestock, game, and poultry) comprises the set of all treatment processes for preserving the properties, taste, texture, and color of raw, partially cooked, or cooked meats while keeping them edible and safe to consume. Curing has been the dominant method of meat preservation for thousands of years, although modern developments like refrigeration and synthetic preservatives have begun to complement and supplant it.

View the full Wikipedia page for Curing (food preservation)
↑ Return to Menu

Water potential in the context of Osmosis

Osmosis (/ɒzˈmsɪs/, US also /ɒs-/) is the spontaneous net movement of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region of higher solute concentration), in the direction that tends to equalize the solute concentrations on the two sides. It may also be used to describe a physical process in which any solvent moves across a selectively permeable membrane (permeable to the solvent, but not the solute) separating two solutions of different concentrations. Osmosis can be made to do work. Osmotic pressure is defined as the external pressure required to prevent net movement of solvent across the membrane. Osmotic pressure is a colligative property, meaning that the osmotic pressure depends on the molar concentration of the solute but not on its identity. Osmotic transport occurs through viscous flow of the solvent under a pressure gradient.

Osmosis is a vital process in biological systems, as biological membranes are semipermeable. In general, these membranes are impermeable to large and polar molecules, such as ions, proteins, and polysaccharides, while being permeable to non-polar or hydrophobic molecules like lipids as well as to small molecules like oxygen, carbon dioxide, nitrogen, and nitric oxide. Permeability depends on solubility, charge, or chemistry, as well as solute size. Water molecules travel through the plasma membrane, tonoplast membrane (vacuole) or organelle membranes across the phospholipid bilayer via aquaporins through a selective pore flow mechanism. Osmosis provides the primary means by which water is transported into and out of cells. The turgor pressure of a cell is largely maintained by osmosis across the cell membrane between the cell interior and its relatively hypotonic environment.

View the full Wikipedia page for Osmosis
↑ Return to Menu

Water potential in the context of Pressure retarded osmosis

Pressure retarded osmosis (PRO) is a technique to separate a solvent (for example, fresh water) from a solution that is more concentrated (e.g. sea water) and also pressurized. A semipermeable membrane allows the solvent to pass to the concentrated solution side by osmosis. The technique can be used to generate power from the salinity gradient energy resulting from the difference in the salt concentration between sea and river water.

View the full Wikipedia page for Pressure retarded osmosis
↑ Return to Menu

Water potential in the context of Osmotic

Osmosis (/ɒzˈmsɪs/, US also /ɒs-/) is the spontaneous net movement of solvent molecules through a selectively permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region of higher solute concentration), in the direction that tends to equalize the solute concentrations on the two sides. It may also be used to describe a physical process in which any solvent moves across a selectively permeable membrane (permeable to the solvent, but not the solute) separating two solutions of different concentrations. Osmosis can be made to do work. Osmotic pressure is defined as the external pressure required to prevent net movement of solvent across the membrane. Osmotic pressure is a colligative property, meaning that the osmotic pressure depends on the molar concentration of the solute but not on its identity. Osmotic transport occurs through viscous flow of the solvent under a pressure gradient.

Osmosis is a vital process in biological systems, as biological membranes are semipermeable. In general, these membranes are impermeable to large and polar molecules, such as ions, proteins, and polysaccharides, while being permeable to non-polar or hydrophobic molecules like lipids as well as to small molecules like oxygen, carbon dioxide, nitrogen, and nitric oxide. Permeability depends on solubility, charge, or chemistry, as well as solute size. Water molecules travel through the plasma membrane, tonoplast membrane (vacuole) or organelle membranes across the phospholipid bilayer via aquaporins through a selective pore flow mechanism. Osmosis provides the primary means by which water is transported into and out of cells. The turgor pressure of a cell is largely maintained by osmosis across the cell membrane between the cell interior and its relatively hypotonic environment.

View the full Wikipedia page for Osmotic
↑ Return to Menu

Water potential in the context of Tonicity

In chemical biology, tonicity is a measure of the effective osmotic pressure gradient; the water potential of two solutions separated by a partially-permeable cell membrane. Tonicity depends on the relative concentration of selective membrane-impermeable solutes across a cell membrane which determines the direction and extent of osmotic flux. It is commonly used when describing the swelling-versus-shrinking response of cells immersed in an external solution.

Unlike osmotic pressure, tonicity is influenced only by solutes that cannot cross the membrane, as only these exert an effective osmotic pressure. Solutes able to freely cross the membrane do not affect tonicity because they will always equilibrate with equal concentrations on both sides of the membrane without net solvent movement. It is also a factor affecting imbibition.

View the full Wikipedia page for Tonicity
↑ Return to Menu

Water potential in the context of Tensiometer (soil science)

A tensiometer in soil science is a measuring instrument used to determine the matric water potential () (soil moisture tension) in the vadose zone. This device typically consists of a glass or plastic tube with a porous ceramic cup and is filled with water. The top of the tube has either a built-in vacuum gauge or a rubber cap used with a portable puncture tensiometer instrument, which uses a hypodermic needle to measure the pressure inside the tensiometer. The tensiometer is buried in the soil, and a hand pump is used to pull a partial vacuum. As water is pulled out of the soil by plants and evaporation, the vacuum inside the tube increases. When the soil is wetted flow can also occur in the reverse direction: as water is added to the soil, the vacuum inside the tube pulls moisture from the soil and decreases. When the water pressure in the tensiometer is determined to be in equilibrium with the water pressure in the soil, the tensiometer gauge reading represents the matric potential of the soil.

Such tensiometers are used in irrigation scheduling to help farmers and other irrigation managers to determine when to water. In conjunction with a water retention curve, tensiometers can be used to determine how much to water. With practice, a tensiometer can be a useful tool for these purposes. Soil tensiometers can also be used in the scientific study of soils and plants.

View the full Wikipedia page for Tensiometer (soil science)
↑ Return to Menu