Wafer (electronics) in the context of Solar cell


Wafer (electronics) in the context of Solar cell

Wafer (electronics) Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Wafer (electronics) in the context of "Solar cell"


⭐ Core Definition: Wafer (electronics)

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

The wafer serves as the substrate for microelectronic devices built in and upon the wafer. It undergoes many microfabrication processes, such as doping, ion implantation, etching, thin-film deposition of various materials, and photolithographic patterning. Finally, the individual microcircuits are separated by wafer dicing and packaged as an integrated circuit.

↓ Menu
HINT:

In this Dossier

Wafer (electronics) in the context of Coating

A coating is a covering that is applied to the surface of an object, or substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. powder coatings.

Paints and lacquers are coatings that mostly have dual uses, which are protecting the substrate and being decorative, although some artists paints are only for decoration, and the paint on large industrial pipes is for identification (e.g. blue for process water, red for fire-fighting control) in addition to preventing corrosion. Along with corrosion resistance, functional coatings may also be applied to change the surface properties of the substrate, such as adhesion, wettability, or wear resistance. In other cases the coating adds a completely new property, such as a magnetic response or electrical conductivity (as in semiconductor device fabrication, where the substrate is a wafer), and forms an essential part of the finished product.

View the full Wikipedia page for Coating
↑ Return to Menu

Wafer (electronics) in the context of Photomask

A photomask (also simply called a mask) is an opaque plate with transparent areas that allow light to shine through in a defined pattern. Photomasks are commonly used in photolithography for the production of integrated circuits (ICs or "chips") to produce a pattern on a thin wafer of material (usually silicon). In semiconductor manufacturing, a mask is sometimes called a reticle.

In photolithography, several masks are used in turn, each one reproducing a layer of the completed design, and together known as a mask set. A curvilinear photomask has patterns with curves, which is a departure from conventional photomasks which only have patterns that are completely vertical or horizontal, known as manhattan geometry. These photomasks require special equipment to manufacture.

View the full Wikipedia page for Photomask
↑ Return to Menu

Wafer (electronics) in the context of Chemical vapor deposition

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit. Frequently, volatile by-products are also produced, which are removed by gas flow through the reaction chamber.

View the full Wikipedia page for Chemical vapor deposition
↑ Return to Menu

Wafer (electronics) in the context of Etching (microfabrication)

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module in fabrication, and every wafer undergoes many etching steps before it is complete.

For many etch steps, part of the wafer is protected from the etchant by a "masking" material which resists etching. In some cases, the masking material is a photoresist which has been patterned using photolithography. Other situations require a more durable mask, such as silicon nitride.

View the full Wikipedia page for Etching (microfabrication)
↑ Return to Menu

Wafer (electronics) in the context of Sapphire

Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide (α-Al2O3) with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name sapphire is derived from the Latin word sapphirus, itself from the Greek word sappheiros (σάπφειρος), which referred to lapis lazuli. It is typically blue, but natural "fancy" sapphires also occur in yellow, purple, orange, and green colors; "parti sapphires" show two or more colors. Red corundum stones also occur, but are called rubies rather than sapphires. Pink-colored corundum may be classified either as ruby or sapphire depending on the locale. Commonly, natural sapphires are cut and polished into gemstones and worn in jewelry. They also may be created synthetically in laboratories for industrial or decorative purposes in large crystal boules. Because of the remarkable hardness of sapphires – 9 on the Mohs scale (the third-hardest mineral, after diamond at 10 and moissanite at 9.5) – sapphires are also used in some non-ornamental applications, such as infrared optical components, high-durability windows, wristwatch crystals and movement bearings, and very thin electronic wafers, which are used as the insulating substrates of special-purpose solid-state electronics such as integrated circuits and GaN-based blue LEDs. It occurs in association with ruby, zircon, biotite, muscovite, calcite, dravite and quartz.

View the full Wikipedia page for Sapphire
↑ Return to Menu

Wafer (electronics) in the context of Cleanroom suit

A cleanroom suit, clean room suit, or bunny suit, is an overall garment worn in a cleanroom, an environment with a controlled level of contamination. One common type is an all-in-one coverall worn by semiconductor and nanotechnology line production workers, technicians, and process / equipment engineers. Similar garments are worn by people in similar roles creating sterile products for the medical device, biopharmaceutical and optical instrument industries.

The suit covers the wearer to prevent skin and hair being shed into a clean room environment. The suit may be in one piece or consist of several separate garments worn tightly together. The suit incorporates both boots and hood, designed to be breathable and lightweight while protecting the wearer. Polypropylene with a polyethylene coating, or Tyvek polyethylene are standard. The materials found in cleanroom suits can also be found on personal protective equipment.

View the full Wikipedia page for Cleanroom suit
↑ Return to Menu

Wafer (electronics) in the context of Semiconductor device fabrication

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as RAM and flash memory). It is a multiple-step photolithographic and physico-chemical process (with steps such as thermal oxidation, thin-film deposition, ion implantation, etching) during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications. Steps such as etching and photolithography can be used to manufacture other devices, such as LCD and OLED displays.

The fabrication process is performed in highly specialized semiconductor fabrication plants, also called foundries or "fabs", with the central part being the "clean room". In more advanced semiconductor devices, such as modern 14/10/7 nm nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated, with automated material handling systems taking care of the transport of wafers from machine to machine.

View the full Wikipedia page for Semiconductor device fabrication
↑ Return to Menu

Wafer (electronics) in the context of Wafer fabrication

Wafer fabrication is a procedure composed of many repeated sequential processes to produce complete electrical or photonic circuits on semiconductor wafers in a semiconductor device fabrication process. Examples include production of radio frequency (RF) amplifiers, LEDs, optical computer components, and microprocessors for computers. Wafer fabrication is used to build components with the necessary electrical structures.

The main process begins with integrated circuit design, where electrical engineers designing the circuit and defining its functions, and specifying the signals, inputs/outputs and voltages needed. These electrical circuit specifications are entered into electrical circuit design software, such as SPICE, and then imported into circuit layout programs, which are similar to ones used for computer aided design. This is necessary for the layers to be defined for photomask production. The resolution of the circuits increases rapidly with each step in design, as the scale of the circuits at the start of the design process is already being measured in fractions of micrometers. Each step thus increases circuit density for a given area.

View the full Wikipedia page for Wafer fabrication
↑ Return to Menu

Wafer (electronics) in the context of Length measurement

Length measurement, distance measurement, or range measurement (ranging) all refer to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the speed of light. Surveying is one ancient use of measuring long distances.

For tiny objects such as crystals and diffraction gratings, diffraction is used with X-ray light, or even electron beams. Measurement techniques for three-dimensional structures very small in every dimension use specialized instruments such as ion microscopy coupled with intensive computer modeling. These techniques are employed, for example, to measure the tiny features on wafers during the manufacture of chips.

View the full Wikipedia page for Length measurement
↑ Return to Menu

Wafer (electronics) in the context of Semiconductor devices

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum (typically liberated by thermionic emission) or as free electrons and ions through an ionized gas.

Semiconductor devices are manufactured both as single discrete devices and as integrated circuits, which consist of two or more devices—which can number from the hundreds to the billions—manufactured and interconnected on a single semiconductor wafer (also called a substrate).

View the full Wikipedia page for Semiconductor devices
↑ Return to Menu

Wafer (electronics) in the context of Thermal oxidation

In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The rate of oxide growth is often predicted by the Deal–Grove model. Thermal oxidation may be applied to different materials, but most commonly involves the oxidation of silicon substrates to produce silicon dioxide.

View the full Wikipedia page for Thermal oxidation
↑ Return to Menu

Wafer (electronics) in the context of Die (integrated circuit)

In the context of integrated circuits, a die is a small block of semiconducting material on which a given functional circuit is fabricated. Typically, integrated circuits are produced in large batches on a single wafer of electronic-grade silicon (EGS) or other semiconductor (such as GaAs) through processes such as photolithography. The wafer is cut (diced) into many pieces, each containing one copy of the circuit. Each of these pieces is called a die.

There are three commonly used plural forms: dice, dies, and die. To simplify handling and integration onto a printed circuit board, most dies are packaged in various forms.

View the full Wikipedia page for Die (integrated circuit)
↑ Return to Menu

Wafer (electronics) in the context of Crystalline silicon

Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight.

In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips. This silicon contains much lower impurity levels than those required for solar cells. Production of semiconductor grade silicon involves a chemical purification to produce hyper-pure polysilicon, followed by a recrystallization process to grow monocrystalline silicon. The cylindrical boules are then cut into wafers for further processing.

View the full Wikipedia page for Crystalline silicon
↑ Return to Menu

Wafer (electronics) in the context of Wafer dicing

Die singulation, also called wafer dicing, is the process in semiconductor device fabrication by which dies are separated from a finished wafer of semiconductor. It can involve scribing and breaking, mechanical sawing (normally with a machine called a dicing saw) or laser cutting. All methods are typically automated to ensure precision and accuracy.Following the dicing process the individual silicon chips may be encapsulated into chip carriers which are then suitable for use in building electronic devices such as computers, etc.

During dicing, wafers are typically mounted on dicing tape which has a sticky backing that holds the wafer on a thin sheet metal frame. Dicing tape has different properties depending on the dicing application. UV curable tapes are used for smaller sizes and non-UV dicing tape for larger die sizes. Dicing saws may use a dicing blade with diamond particles, rotating at 30,000 RPM and cooled with deionized water. Once a wafer has been diced, the pieces left on the dicing tape are referred to as die, dice or dies. Each will be packaged in a suitable package or placed directly on a printed circuit board substrate as a "bare die". The areas that have been cut or sawn away, called die streets, are typically about 75 micrometres (0.003 inch) wide. Once a wafer has been diced, the die will stay on the dicing tape until they are extracted by die-handling equipment, such as a die bonder or die sorter, further in the electronics assembly process.

View the full Wikipedia page for Wafer dicing
↑ Return to Menu

Wafer (electronics) in the context of Reactive ion etching

Reactive-ion etching (RIE) is an etching technology used in microfabrication. RIE is a type of dry etching which has different characteristics than wet etching. RIE uses chemically reactive plasma to remove material deposited on wafers. The plasma is generated under low pressure (vacuum) by an electromagnetic field. High-energy ions from the plasma attack the wafer surface and react with it.

View the full Wikipedia page for Reactive ion etching
↑ Return to Menu

Wafer (electronics) in the context of Monolithic microwave integrated circuit

Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as microwave mixing, power amplification, low-noise amplification, and high-frequency switching. Inputs and outputs on MMIC devices are frequently matched to a characteristic impedance of 50 ohms. This makes them easier to use, as cascading of MMICs does not then require an external matching network. Additionally, most microwave test equipment is designed to operate in a 50-ohm environment.

MMICs are dimensionally small (from around 1 mm to 10 mm) and can be mass-produced, which has allowed the proliferation of high-frequency devices such as cellular phones. MMICs were originally fabricated using gallium arsenide (GaAs), a III-V compound semiconductor. It has two fundamental advantages over silicon (Si), the traditional material for IC realisation: device (transistor) speed and a semi-insulating substrate. Both factors help with the design of high-frequency circuit functions. However, the speed of Si-based technologies has gradually increased as transistor feature sizes have reduced, and MMICs can now also be fabricated in Si technology. The primary advantage of Si technology is its lower fabrication cost compared with GaAs. Silicon wafer diameters are larger (typically 8" to 12" compared with 4" to 8" for GaAs) and the wafer costs are lower, contributing to a less expensive IC.

View the full Wikipedia page for Monolithic microwave integrated circuit
↑ Return to Menu