Vertebrates in the context of Endocranium


Vertebrates in the context of Endocranium

Vertebrates Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Vertebrates in the context of "Endocranium"


⭐ Core Definition: Vertebrates

Vertebrates (/ˈvɜːrtəbrɪt, -ˌbrt/), also called craniates, are animals with a vertebral column and a cranium. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain.

The vertebrates make up the subphylum Vertebrata (/ˌvɜːrtəˈbrtə/ VUR-tə-BRAY-tə) with some 65,000 species, by far the largest ranked grouping in the phylum Chordata. The vertebrates include mammals, birds, amphibians, and various classes of fish and reptiles. The fish include the jawless Agnatha, and the jawed Gnathostomata. The jawed fish include both the cartilaginous fish and the bony fish. Bony fish include the lobe-finned fish, which gave rise to the tetrapods, the animals with four limbs. Despite their success, vertebrates still only make up less than five percent of all described animal species.

↓ Menu
HINT:

In this Dossier

Vertebrates in the context of Central nervous system

The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral (nose end) to caudal (tail end) axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain, though precursor structures exist in onychophorans, gastropods and lancelets.

The rest of this article exclusively discusses the vertebrate central nervous system, which is radically distinct from all other animals.

View the full Wikipedia page for Central nervous system
↑ Return to Menu

Vertebrates in the context of Egg

An egg is an organic vessel grown by an animal to carry a possibly fertilized egg cell – a zygote. Within the vessel, an embryo is incubated until it has become an animal fetus that can survive on its own, at which point the animal hatches. Reproductive structures similar to the egg in other kingdoms are termed "spores", or in spermatophytes "seeds", or in gametophytes "egg cells".

Most arthropods, vertebrates (excluding live-bearing mammals), and mollusks lay eggs, although some, such as scorpions, do not. Reptile eggs, bird eggs, and monotreme eggs are laid out of water and are surrounded by a protective shell, either flexible or inflexible. Eggs laid on land or in nests are usually kept within a warm and favorable temperature range while the embryo grows. When the embryo is adequately developed it hatches; i.e., breaks out of the egg's shell. Some embryos have a temporary egg tooth they use to crack, pip, or break the eggshell or covering.

View the full Wikipedia page for Egg
↑ Return to Menu

Vertebrates in the context of Subphylum

In zoological nomenclature, a subphylum is a taxonomic rank below the rank of phylum.

The taxonomic rank of "subdivision" in fungi and plant taxonomy is equivalent to "subphylum" in zoological taxonomy. Some plant taxonomists have also used the rank of subphylum, for instance monocotyledons as a subphylum of phylum Angiospermae and vertebrates as a subphylum of phylum Chordata.

View the full Wikipedia page for Subphylum
↑ Return to Menu

Vertebrates in the context of Vas deferens

The vas deferens (pl.: vasa deferentia), ductus deferens (pl.: ductūs deferentes), or sperm duct is part of the male reproductive system of many vertebrates. In mammals, spermatozoa are produced in the seminiferous tubules and flow into the epididymal duct. The end of the epididymis is connected to the vas deferens. The vas deferens ends with an opening into the ejaculatory duct at a point where the duct of the seminal vesicle also joins the ejaculatory duct.The vas deferens is a partially coiled tube which exits the abdominal cavity through the inguinal canal.

View the full Wikipedia page for Vas deferens
↑ Return to Menu

Vertebrates in the context of Thoracic spine

In vertebrates, thoracic vertebrae compose the middle segment of the vertebral column, between the cervical vertebrae and the lumbar vertebrae. In humans, there are twelve thoracic vertebrae of intermediate size between the cervical and lumbar vertebrae; they increase in size going towards the lumbar vertebrae. They are distinguished by the presence of facets on the sides of the bodies for articulation with the heads of the ribs, as well as facets on the transverse processes of all, except the eleventh and twelfth, for articulation with the tubercles of the ribs. By convention, the human thoracic vertebrae are numbered T1–T12, with the first one (T1) located closest to the skull and the others going down the spine toward the lumbar region.
Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).

View the full Wikipedia page for Thoracic spine
↑ Return to Menu

Vertebrates in the context of Keratin

Keratin (/ˈkɛrətɪn/) is one of a family of structural fibrous proteins also known as scleroproteins. It is the key structural material making up scales, hair, nails, feathers, horns, claws, hooves, and the outer layer of skin in tetrapod vertebrates. Keratin also protects epithelial cells from damage or stress. Keratin is extremely insoluble in water and organic solvents. Keratin monomers assemble into bundles to form intermediate filaments, which are tough and form strong unmineralized epidermal appendages found in reptiles, birds, amphibians, and mammals. Excessive keratinization participate in fortification of certain tissues such as in horns of cattle and rhinos, and armadillos' osteoderm. The only other biological matter known to approximate the toughness of keratinized tissue is chitin.Keratin comes in two types: the primitive, softer forms found in all vertebrates and the harder, derived forms found only among sauropsids (reptiles and birds).

View the full Wikipedia page for Keratin
↑ Return to Menu

Vertebrates in the context of Homology (biology)

In biology, homology is similarity in anatomical structures or genes between organisms of different taxa due to shared ancestry, regardless of current functional differences. Evolutionary biology explains homologous structures as retained heredity from a common ancestor after having been subjected to adaptive modifications for different purposes as the result of natural selection.

The term was first applied to biology in a non-evolutionary context by the anatomist Richard Owen in 1843. Homology was later explained by Charles Darwin's theory of evolution in 1859, but had been observed before this from Aristotle's biology onwards, and it was explicitly analysed by Pierre Belon in 1555. A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats and birds, the arms of primates, the front flippers of whales, and the forelegs of four-legged vertebrates like horses and crocodilians are all derived from the same ancestral tetrapod structure.

View the full Wikipedia page for Homology (biology)
↑ Return to Menu

Vertebrates in the context of Forebrain

In the anatomy of the brain of vertebrates, the forebrain or prosencephalon is the rostral (forward-most) portion of the brain. The forebrain controls body temperature, reproductive functions, eating, sleeping, and the display of emotions.

Vesicles of the forebrain (prosencephalon), the midbrain (mesencephalon), and hindbrain (rhombencephalon) are the three primary brain vesicles during the early development of the nervous system. At the five-vesicle stage, the forebrain separates into the diencephalon (thalamus, hypothalamus, subthalamus, and epithalamus) and the telencephalon which develops into the cerebrum. The cerebrum consists of the cerebral cortex, underlying white matter, and the basal ganglia.

View the full Wikipedia page for Forebrain
↑ Return to Menu

Vertebrates in the context of Hindbrain

The hindbrain, rhombencephalon (shaped like a rhombus) is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla, pons, and cerebellum. Together they support vital bodily processes.

View the full Wikipedia page for Hindbrain
↑ Return to Menu

Vertebrates in the context of Organogenesis

Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation (the ectoderm, endoderm, and mesoderm) form the internal organs of the organism.

The cells of each of the three germ layers undergo differentiation, a process where less-specialized cells become more-specialized through the expression of a specific set of genes. Cell differentiation is driven by cell signaling cascades. Differentiation is influenced by extracellular signals such as growth factors that are exchanged to adjacent cells which is called juxtracrine signaling or to neighboring cells over short distances which is called paracrine signaling. Intracellular signals – a cell signaling itself (autocrine signaling) – also play a role in organ formation. These signaling pathways allow for cell rearrangement and ensure that organs form at specific sites within the organism. The organogenesis process can be studied using embryos and organoids.

View the full Wikipedia page for Organogenesis
↑ Return to Menu

Vertebrates in the context of Coracoid

A coracoid is a paired bone which is part of the shoulder assembly in all vertebrates except therian mammals (marsupials and placentals). In therian mammals (including humans), a coracoid process is present as part of the scapula, but this is not homologous with the coracoid bone of most other vertebrates.

In other tetrapods, it joins the scapula to the front end of the sternum and has a notch on the dorsal surface which, along with a similar notch on the ventral surface of the scapula, forms the socket in which the proximal end of the humerus (upper arm bone) is located. The acrocoracoid process is an expansion adjacent to this contact surface, to which the shoulderward end of the biceps brachii muscle attaches in these animals. In birds (and generally theropods and related animals), the entire unit is rigid and called scapulocoracoid. This plays a major role in bird flight. In other dinosaurs, the main bones of the pectoral girdle were the scapula (shoulder blade) and the coracoid, both of which directly articulated with the clavicle.

View the full Wikipedia page for Coracoid
↑ Return to Menu

Vertebrates in the context of Central sulcus

In neuroanatomy, the central sulcus (also central fissure, fissure of Rolando, or Rolandic fissure, after Luigi Rolando) is a sulcus, or groove, in the cerebral cortex in the brains of vertebrates. It is sometimes confused with the longitudinal fissure.

The central sulcus is a prominent landmark of the brain, separating the parietal lobe from the frontal lobe and the primary motor cortex from the primary somatosensory cortex.

View the full Wikipedia page for Central sulcus
↑ Return to Menu

Vertebrates in the context of Auditory cortex

The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates. It is a part of the auditory system, performing basic and higher functions in hearing, such as possible relations to language switching. It is located bilaterally, roughly at the upper sides of the temporal lobes – in humans, curving down and onto the medial surface, on the superior temporal plane, within the lateral sulcus and comprising parts of the transverse temporal gyri, and the superior temporal gyrus, including the planum polare and planum temporale (roughly Brodmann areas 41 and 42, and partially 22).

The auditory cortex takes part in the spectrotemporal, meaning involving time and frequency, analysis of the inputs passed on from the ear. Nearby brain areas then filter and pass on the information to the two streams of speech processing. The auditory cortex's function may help explain why particular brain damage leads to particular outcomes. For example, unilateral destruction, in a region of the auditory pathway above the cochlear nucleus, results in slight hearing loss, whereas bilateral destruction results in cortical deafness.

View the full Wikipedia page for Auditory cortex
↑ Return to Menu

Vertebrates in the context of Seed predation

Seed predation, often referred to as granivory, is a type of plant-animal interaction in which granivores (seed predators) feed on the seeds of plants as a main or exclusive food source, in many cases leaving the seeds damaged and not viable. Granivores are found across many families of vertebrates (especially mammals and birds) as well as invertebrates (mainly insects); thus, seed predation occurs in virtually all terrestrial ecosystems.

Seed predation is commonly divided into two distinctive temporal categories, pre-dispersal and post-dispersal predation, which affect the fitness of the parental plant and the dispersed offspring (the seed), respectively. Mitigating pre- and post-dispersal predation may involve different strategies. To counter seed predation, plants have evolved both physical defenses (e.g., shape and toughness of the seed coat) and chemical defenses (secondary compounds such as tannins and alkaloids). However, as plants have evolved seed defenses, seed predators have adapted to plant defenses (e.g., ability to detoxify chemical compounds). Thus, many interesting examples of coevolution arise from this dynamic relationship.

View the full Wikipedia page for Seed predation
↑ Return to Menu

Vertebrates in the context of Hair cell

Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment.

In mammals, the auditory hair cells are located within the spiral organ of Corti on the thin basilar membrane in the cochlea of the inner ear. They derive their name from the tufts of stereocilia called hair bundles that protrude from the apical surface of the cell into the fluid-filled cochlear duct. The stereocilia number from fifty to a hundred in each cell while being tightly packed together and decrease in size the further away they are located from the kinocilium.

View the full Wikipedia page for Hair cell
↑ Return to Menu