Vapor barrier in the context of "Glass wool"

Play Trivia Questions online!

or

Skip to study material about Vapor barrier in the context of "Glass wool"

Ad spacer

⭐ Core Definition: Vapor barrier

A vapor barrier (or vapour barrier) is any material used for damp proofing, typically a plastic or foil sheet, that resists diffusion of moisture through the wall, floor, ceiling, or roof assemblies of buildings and of packaging to prevent interstitial condensation. Technically, many of these materials are only vapor retarders as they have varying degrees of permeability.

Materials have a moisture vapor transmission rate (MVTR) that is established by standard test methods. One common set of units is g/m·day or g/100in·day. Permeability can be reported in perms, a measure of the rate of transfer of water vapor through a material (1.0 US perm = 1.0 grain/square-foot·hour·inch of mercury ≈ 57 SI perm = 57 ng/s·m·Pa). American building codes started classifying vapor retarders in the 2007 IRC supplement. They are Class I <0.1 perm, Class II 0.1 - 1 perm and Class III 1-10 perm when tested in accordance with the ASTM E96 desiccant, dry cup or method A. Vapor-retarding materials are generally categorized as:

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Vapor barrier in the context of Radiant barrier

A radiant barrier is a type of building material that reflects thermal radiation and reduces heat transfer. Because thermal energy is also transferred by conduction and convection, in addition to radiation, radiant barriers are often supplemented with thermal insulation that slows down heat transfer by conduction or convection.

A radiant barrier reflects heat radiation (radiant heat), preventing transfer from one side of the barrier to another due to a reflective, low emittance surface. In building applications, this surface is typically a very thin, mirror-like aluminum foil. The foil may be coated for resistance to the elements or for abrasion resistance. The radiant barrier may be one or two sided. One sided radiant barrier may be attached to insulating materials, such as polyisocyanurate, rigid foam, bubble insulation, or oriented strand board (OSB). Reflective tape can be adhered to strips of radiant barrier to make it a contiguous vapor barrier or, alternatively, radiant barrier can be perforated for vapor transmittance.

↑ Return to Menu

Vapor barrier in the context of Damp proofing

Damp proofing in construction is a type of moisture control applied to building walls and floors to prevent moisture from passing into the interior spaces. Dampness problems are among the most frequent problems encountered in residences.

Damp proofing is defined by the American Society for Testing and Materials (ASTM) as a material that resists the passage of water with no hydrostatic pressure. Waterproof is defined by the ASTM as a treatment that resists the passage of water under pressure. Generally, damp proofing keeps exterior moisture from entering a building; vapor barriers, a separate category, keep interior moisture from getting into walls. Moisture resistance is not necessarily absolute; it is usually stated in terms of acceptable limits based on engineering tolerances and a specific test method.

↑ Return to Menu

Vapor barrier in the context of Moisture vapor transmission rate

Moisture vapor transmission rate (MVTR), also water vapor transmission rate (WVTR), is a measure of the passage of water vapor through a substance. It is a measure of the permeability for vapor barriers.

There are many industries where moisture control is critical. Moisture sensitive foods and pharmaceuticals are put in packaging with controlled MVTR to achieve the required quality, safety, and shelf life. In clothing, MVTR as a measure of breathability has contributed to greater comfort for wearers of clothing for outdoor activity. The building materials industry also manages the moisture barrier properties in architectural components to ensure the correct moisture levels in the internal spaces of buildings. Optoelectronic devices based on organic material, generally named OLEDs, need an encapsulation with low values of WVTR to guarantee the same performances over the lifetime of the device.

↑ Return to Menu