Vacancy defect in the context of "Frenkel pair"


Vacancy defect in the context of "Frenkel pair"

Vacancy defect Study page number 1 of 1

Answer the Vacancy Defect Trivia Question!

or

Skip to study material about Vacancy defect in the context of "Frenkel pair"


⭐ Core Definition: Vacancy defect

In crystallography, a vacancy is a type of point defect in a crystal where an atom is missing from one of the lattice sites. Crystals inherently possess imperfections, sometimes referred to as crystallographic defects.

Vacancies occur naturally in all crystalline materials. At any given temperature, up to the melting point of the material, there is an equilibrium concentration (ratio of vacant lattice sites to those containing atoms). At the melting point of some metals the ratio can be approximately 1:1000. This temperature dependence can be modelled by

↓ Menu
HINT:

šŸ‘‰ Vacancy defect in the context of Frenkel pair

In crystallography, a Frenkel defect is a type of point defect in crystalline solids, named after its discoverer Yakov Frenkel. The defect forms when an atom or smaller ion (usually cation) leaves its place in the structure, creating a vacancy and becomes an interstitial by lodging in a nearby location. In elemental systems, they are primarily generated during particle irradiation, as their formation enthalpy is typically much higher than for other point defects, such as vacancies, and thus their equilibrium concentration according to the Boltzmann distribution is below the detection limit. In ionic crystals, which usually possess low coordination number or a considerable disparity in the sizes of the ions, this defect can be generated also spontaneously, where the smaller ion (usually the cation) is dislocated. Similar to a Schottky defect the Frenkel defect is a stoichiometric defect (does not change the overall stoichiometry of the compound). In ionic compounds, the vacancy and interstitial defect involved are oppositely charged and one might expect them to be located close to each other due to electrostatic attraction. However, this is not likely the case in real material due to smaller entropy of such a coupled defect, or because the two defects might collapse into each other. Also, because such coupled complex defects are stoichiometric, their concentration will be independent of chemical conditions.

↓ Explore More Topics
In this Dossier