Unpaired electron in the context of "Superoxide"

Play Trivia Questions online!

or

Skip to study material about Unpaired electron in the context of "Superoxide"

Ad spacer

โญ Core Definition: Unpaired electron

In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons (electron pair) with opposite spins. As the formation of electron pairs is often energetically favourable, either in the form of a chemical bond or as a lone pair, unpaired electrons are relatively uncommon in chemistry, because an entity that carries an unpaired electron is usually rather reactive. In organic chemistry they typically only occur briefly during a reaction on an entity called a radical; however, they play an important role in explaining reaction pathways.

Radicals are uncommon in s- and p-block chemistry, since the unpaired electron occupies a valence p orbital or an sp, sp or sp hybrid orbital. These orbitals are strongly directional and therefore overlap to form strong covalent bonds, favouring dimerisation of radicals. Radicals can be stable if dimerisation would result in a weak bond or the unpaired electrons are stabilised by delocalisation. In contrast, radicals in d- and f-block chemistry are very common. The less directional, more diffuse d and f orbitals, in which unpaired electrons reside, overlap less effectively, form weaker bonds and thus dimerisation is generally disfavoured. These d and f orbitals also have comparatively smaller radial extension, disfavouring overlap to form dimers.

โ†“ Menu

>>>PUT SHARE BUTTONS HERE<<<

๐Ÿ‘‰ Unpaired electron in the context of Superoxide

In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula Oโˆ’2. The systematic name of the anion is dioxide(1โˆ’). The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen O2, which occurs widely in nature. Molecular oxygen (dioxygen) is a diradical containing two unpaired electrons, and superoxide results from the addition of an electron which fills one of the two degenerate molecular orbitals, leaving a charged ionic species with a single unpaired electron and a net negative charge of โˆ’1. Both dioxygen and the superoxide anion are free radicals that exhibit paramagnetism. Superoxide was historically also known as "hyperoxide".

โ†“ Explore More Topics
In this Dossier

Unpaired electron in the context of Polyatomic ion

A polyatomic ion (also known as a molecular ion) is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that usually has a net charge that is not zero, or in special case of zwitterion where spatially separated charges where the net charge may be variable depending on acidity conditions. The term molecule may or may not be used to refer to a polyatomic ion, depending on the definition used. The prefix poly- carries the meaning "many" in Greek, but even ions of two atoms are commonly described as polyatomic. There may be more than one atom in the structure that has non-zero charge, therefore the net charge of the structure may have a cationic (positive) or anionic nature depending on those atomic details.

In older literature, a polyatomic ion may instead be referred to as a radical (or less commonly, as a radical group). In contemporary usage, the term radical refers to various free radicals, which are species that have an unpaired electron and need not be charged.

โ†‘ Return to Menu

Unpaired electron in the context of Transition metal

In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinide elements (the f-block) are called inner transition metals and are sometimes considered to be transition metals as well.

They are lustrous metals with good electrical and thermal conductivity. Most (with the exception of group 11 and group 12) are hard and strong, and have high melting and boiling temperatures. They form compounds in any of two or more different oxidation states and bind to a variety of ligands to form coordination complexes that are often coloured. They form many useful alloys and are often employed as catalysts in elemental form or in compounds such as coordination complexes and oxides. Most are strongly paramagnetic because of their unpaired d electrons, as are many of their compounds. All of the elements that are ferromagnetic near room temperature are transition metals (iron, cobalt and nickel) or inner transition metals (gadolinium).

โ†‘ Return to Menu

Unpaired electron in the context of Nitric oxide

Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula (N=O or NO). Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.

An important intermediate in industrial chemistry, nitric oxide forms in combustion systems and can be generated by lightning in thunderstorms. In mammals, including humans, nitric oxide is a signaling molecule in many physiological and pathological processes. It was proclaimed the "Molecule of the Year" in 1992. The 1998 Nobel Prize in Physiology or Medicine was awarded for discovering nitric oxide's role as a cardiovascular signalling molecule. Its impact extends beyond biology, with applications in medicine, such as the development of sildenafil (Viagra), and in industry, including semiconductor manufacturing.

โ†‘ Return to Menu

Unpaired electron in the context of Paramagnetism

Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the direction opposite to that of the applied magnetic field. Paramagnetic materials include most chemical elements and some compounds; they have a relative magnetic permeability slightly greater than 1 (i.e., a small positive magnetic susceptibility) and hence are attracted to magnetic fields. The magnetic moment induced by the applied field is linear in the field strength and rather weak. It typically requires a sensitive analytical balance to detect the effect and modern measurements on paramagnetic materials are often conducted with a SQUID magnetometer.

Paramagnetism is due to the presence of unpaired electrons in the material, so most atoms with incompletely filled atomic orbitals are paramagnetic, although exceptions such as copper exist. Due to their spin, unpaired electrons have a magnetic dipole moment and act like tiny magnets. An external magnetic field causes the electrons' spins to align parallel to the field, causing a net attraction. Paramagnetic materials include aluminium, oxygen, titanium, and iron oxide (FeO). Therefore, a simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: if all electrons in the particle are paired, then the substance made of this particle is diamagnetic; if it has unpaired electrons, then the substance is paramagnetic.

โ†‘ Return to Menu

Unpaired electron in the context of Radical (chemistry)

In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron.With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

A notable example of a radical is the hydroxyl radical (HOยท), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (๊ž‰CH
2
) which have two unpaired electrons.

โ†‘ Return to Menu