Units of measurement in the context of Opposite vector


Units of measurement in the context of Opposite vector

Units of measurement Study page number 1 of 7

Play TriviaQuestions Online!

or

Skip to study material about Units of measurement in the context of "Opposite vector"


⭐ Core Definition: Units of measurement

A unit of measurement, or unit of measure, is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement.

For example, a length is a physical quantity. The metre (symbol m) is a unit of length that represents a definite predetermined length. For instance, when referencing "10 metres" (or 10 m), what is meant is 10 times the definite predetermined length called "metre".

↓ Menu
HINT:

In this Dossier

Units of measurement in the context of Square kilometre

The square kilometre (square kilometer in American spelling; symbol: km) is a multiple of the square metre, the SI unit of area or surface area. In the SI unit of area (m), 1 km is equal to 1M(m).

View the full Wikipedia page for Square kilometre
↑ Return to Menu

Units of measurement in the context of Fathom

A fathom is a unit of length in the imperial and U.S. customary systems equal to 6 feet (1.8288 m), used especially for measuring the depth of water. The fathom is neither an international standard (SI) unit, nor an internationally accepted non-SI unit. Historically, it was the maritime measure of depth in the English-speaking world but, apart from within the US, charts now use metres.

There are two yards (6 feet) in an imperial fathom. Originally the span of a man's outstretched arms, the size of a fathom has varied slightly depending on whether it was defined as a thousandth of an (Admiralty) nautical mile or as a multiple of the imperial yard. Formerly, the term was used for any of several units of length varying around 5–5+12 feet (1.5–1.7 m).

View the full Wikipedia page for Fathom
↑ Return to Menu

Units of measurement in the context of Cent (currency)

The cent is a monetary unit of many national currencies that equals a hundredth (1100) of the basic monetary unit. The word derives from the Latin centum, 'hundred'.

The cent sign is commonly a simple minuscule (lower case) letter c. In North America, the c is crossed by a diagonal or vertical stroke (depending on typeface), yielding the character ¢.

View the full Wikipedia page for Cent (currency)
↑ Return to Menu

Units of measurement in the context of Km/h

The kilometre per hour (SI symbol: km/h; non-SI abbreviations: kph, kmph, km/hr) is a unit of speed, expressing the number of kilometres travelled in one hour.

View the full Wikipedia page for Km/h
↑ Return to Menu

Units of measurement in the context of Size

Size in general is the magnitude or dimensions of a thing. More specifically, geometrical size (or spatial size) can refer to three geometrical measures: length, area, or volume. Length can be generalized to other linear dimensions (width, height, diameter, perimeter). Size can also be measured in terms of mass, especially when assuming a density range.

In mathematical terms, "size is a concept abstracted from the process of measuring by comparing a longer to a shorter". Size is determined by the process of comparing or measuring objects, which results in the determination of the magnitude of a quantity, such as length or mass, relative to a unit of measurement. Such a magnitude is usually expressed as a numerical value of units on a previously established spatial scale, such as meters or inches.

View the full Wikipedia page for Size
↑ Return to Menu

Units of measurement in the context of Technical drawing

Technical drawing, drafting or drawing, is the act and discipline of composing drawings that visually communicate how something functions or is constructed.

Technical drawing is essential for communicating ideas in industry and engineering.To make the drawings easier to understand, people use familiar symbols, perspectives, units of measurement, notation systems, visual styles, and page layout. Together, such conventions constitute a visual language and help to ensure that the drawing is unambiguous and relatively easy to understand. Many of the symbols and principles of technical drawing are codified in an international standard called ISO 128.

View the full Wikipedia page for Technical drawing
↑ Return to Menu

Units of measurement in the context of Inch

The inch (symbol: in or ) is a unit of length in the British Imperial and the United States customary systems of measurement. It is equal to 1/36 yard or 1/12 of a foot. Derived from the Roman uncia ("twelfth"), the word inch is also sometimes used to translate similar units in other measurement systems, usually understood as deriving from the width of the human thumb.

Standards for the exact length of an inch have varied in the past, but since the adoption of the international yard during the 1950s and 1960s the inch has been based on the metric system and defined as exactly 25.4 mm.

View the full Wikipedia page for Inch
↑ Return to Menu

Units of measurement in the context of Nanometre

The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling), is a unit of length in the International System of Units (SI), equal to one billionth (short scale) or one thousand million (long scale) of a metre (0.000000001 m) and to 1000 picometres. One nanometre can be expressed in scientific notation as 1 × 10 m and as 1/1000000000 m.

View the full Wikipedia page for Nanometre
↑ Return to Menu

Units of measurement in the context of Luminance

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

The procedure for conversion from spectral radiance to luminance is standardized by the CIE and ISO.

View the full Wikipedia page for Luminance
↑ Return to Menu

Units of measurement in the context of Parts per thousand

In science and engineering, the parts-per notation is a set of pseudo-units to describe the small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction.

Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are

View the full Wikipedia page for Parts per thousand
↑ Return to Menu

Units of measurement in the context of Euclidean vector

In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space. A vector quantity is a vector-valued physical quantity, including units of measurement and possibly a support, formulated as a directed line segment. A vector is frequently depicted graphically as an arrow connecting an initial point A with a terminal point B, and denoted by

A vector is what is needed to "carry" the point A to the point B; the Latin word vector means 'carrier'. It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations which obey the familiar algebraic laws of commutativity, associativity, and distributivity. These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space.

View the full Wikipedia page for Euclidean vector
↑ Return to Menu

Units of measurement in the context of Stock and flow

Economics, business, accounting, and related fields often distinguish between quantities that are stocks and those that are flows. These differ in their units of measurement. A stock is measured at one specific time, and represents a quantity existing at that point in time (say, December 31, 2004), which may have accumulated in the past. A flow variable is measured over an interval of time. Therefore, a flow would be measured per unit of time (say a year). Flow is roughly analogous to rate or speed in this sense.

For example, U.S. nominal gross domestic product refers to a total number of dollars spent over a time period, such as a year. Therefore, it is a flow variable, and has units of dollars/year. In contrast, the U.S. nominal capital stock is the total value, in dollars, of equipment, buildings, and other real productive assets in the U.S. economy, and has units of dollars. The diagram provides an intuitive illustration of how the stock of capital currently available is increased by the flow of new investment and depleted by the flow of depreciation.

View the full Wikipedia page for Stock and flow
↑ Return to Menu

Units of measurement in the context of United States customary units

United States customary units form a system of measurement units commonly used in the United States and most U.S. territories since being standardized and adopted in 1832. The United States customary system developed from English units that were in use in the British Empire before the U.S. became an independent country. The United Kingdom's system of measures evolved by 1824 to create the imperial system, with imperial units, which was officially adopted in 1826, changing the definitions of some of its units. Consequently, while many U.S. units are essentially similar to their imperial counterparts, there are noticeable differences between the systems.

The majority of U.S. customary units were redefined in terms of the meter and kilogram with the Mendenhall Order of 1893 and, in practice, for many years before. These definitions were refined by the international yard and pound agreement of 1959.

View the full Wikipedia page for United States customary units
↑ Return to Menu

Units of measurement in the context of Chinese units of measurement

Chinese units of measurement, known in Chinese as the shìzhì ("market system"), are the traditional units of measurement of the Han Chinese. Although Chinese numerals have been decimal (base-10) since the Shang, several Chinese measures use hexadecimal (base-16). Local applications have varied, but the Chinese dynasties usually proclaimed standard measurements and recorded their predecessor's systems in their histories.

In the present day, the People's Republic of China maintains some customary units based upon the market units but standardized to round values in the metric system, for example the common jin or catty of exactly 500 g. The Chinese name for most metric units is based on that of the closest traditional unit; when confusion might arise, the word "market" (, shì) is used to specify the traditional unit and "common" or "public" (, gōng) is used for the metric value. Taiwan, like Korea, saw its traditional units standardized to Japanese values and their conversion to a metric basis, such as the Taiwanese ping of about 3.306 m based on the square ken. The Hong Kong SAR continues to use its traditional units, now legally defined based on a local equation with metric units. For instance, the Hong Kong catty is precisely 604.78982 g.

View the full Wikipedia page for Chinese units of measurement
↑ Return to Menu

Units of measurement in the context of English units of measurement

English units were the units of measurement used in England up to 1826 (when they were replaced by Imperial units), which evolved as a combination of the Anglo-Saxon and Roman systems of units. Various standards have applied to English units at different times, in different places, and for different applications.

Use of the term "English units" can be ambiguous, as, in addition to the meaning used in this article, it is sometimes used to refer to the units of the descendant Imperial system as well to those of the descendant system of United States customary units.

View the full Wikipedia page for English units of measurement
↑ Return to Menu

Units of measurement in the context of Celestial coordinate system

In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.

Spherical coordinates, projected on the celestial sphere, are analogous to the geographic coordinate system used on the surface of Earth. These differ in their choice of fundamental plane, which divides the celestial sphere into two equal hemispheres along a great circle. Rectangular coordinates, in appropriate units, have the same fundamental (x, y) plane and primary (x-axis) direction, such as an axis of rotation. Each coordinate system is named after its choice of fundamental plane.

View the full Wikipedia page for Celestial coordinate system
↑ Return to Menu

Units of measurement in the context of SI derived unit

SI derived units are units of measurement derived from theseven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities.SI coherent derived units involve only a trivial proportionality factor, not requiring conversion factors.

The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m), the SI derived unit of area; and the kilogram per cubic metre (kg/m or kg⋅m), the SI derived unit of density.

View the full Wikipedia page for SI derived unit
↑ Return to Menu