Unified field theory in the context of Glashow–Weinberg–Salam model


Unified field theory in the context of Glashow–Weinberg–Salam model

⭐ Core Definition: Unified field theory

In physics, a Unified Field Theory (UFT) is a type of field theory that allows all fundamental forces of nature, including gravity, and all elementary particles to be written in terms of a single physical field. According to quantum field theory, particles are themselves the quanta of fields. Different fields in physics include vector fields such as the electromagnetic field, spinor fields whose quanta are fermionic particles such as electrons, and tensor fields such as the metric tensor field that describes the shape of spacetime and gives rise to gravitation in general relativity. Unified field theories attempt to organize these fields into a single mathematical structure.

For over a century, the unified field theory has remained an open line of research. The term was coined by Albert Einstein, who attempted to unify his general theory of relativity with electromagnetism. Einstein attempted to create a classical unified field theory. Among other difficulties, this required a new explanation of particles as singularities or solitons instead of field quanta. Later attempts to unify general relativity with other forces incorporate quantum mechanics. The concept of a "Theory of Everything" or Grand Unified Theory are closely related to unified field theory. A theory of everything attempts to create a complete picture of all events in nature. Grand Unified Theories do not attempt to include the gravitational force and can therefore operate entirely within quantum field theory. The goal of a unified field theory has led to significant progress in theoretical physics.

↓ Menu
HINT:

In this Dossier

Unified field theory in the context of Electroweak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 10 K – then the electromagnetic force and weak force merge into a combined electroweak force.

During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 10 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5×10 K (from the Large Hadron Collider).

View the full Wikipedia page for Electroweak interaction
↑ Return to Menu

Unified field theory in the context of Erwin Schrödinger

Erwin Rudolf Josef Alexander Schrödinger (/ˈʃrdɪŋər/ SHROH-ding-er, German: [ˈʃʁøːdɪŋɐ] ; 12 August 1887 – 4 January 1961), sometimes written as Schroedinger or Schrodinger, was an Austrian–Irish theoretical physicist who developed fundamental results in quantum theory. In particular, he is recognized for devising the Schrödinger equation, an equation that provides a way to calculate the wave function of a system and how it changes dynamically in time. He coined the term "quantum entanglement" in 1935.

In addition, Schrödinger wrote many works on various aspects of physics: statistical mechanics and thermodynamics, physics of dielectrics, color theory, electrodynamics, general relativity, and cosmology, and he made several attempts to construct a unified field theory. In his book, What Is Life?, Schrödinger addressed the problems of genetics, looking at the phenomenon of life from the point of view of physics. He also paid great attention to the philosophical aspects of science, ancient, and oriental philosophical concepts, ethics, and religion. He also wrote on philosophy and theoretical biology. In popular culture, he is best known for his "Schrödinger's cat" thought experiment.

View the full Wikipedia page for Erwin Schrödinger
↑ Return to Menu

Unified field theory in the context of Classical unified field theories

Since the 19th century, some physicists, notably Albert Einstein, have attempted to develop a single theoretical framework that can account for all the fundamental forces of nature – a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics. In particular, unification of gravitation and electromagnetism was actively pursued by several physicists and mathematicians in the years between the two World Wars. This work spurred the purely mathematical development of differential geometry.

This article describes various attempts at formulating a classical (non-quantum), relativistic unified field theory. For a survey of classical relativistic field theories of gravitation that have been motivated by theoretical concerns other than unification, see Classical theories of gravitation. For a survey of current work toward creating a quantum theory of gravitation, see quantum gravity.

View the full Wikipedia page for Classical unified field theories
↑ Return to Menu