Unbiased estimation of standard deviation in the context of Confidence intervals


Unbiased estimation of standard deviation in the context of Confidence intervals

Unbiased estimation of standard deviation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Unbiased estimation of standard deviation in the context of "Confidence intervals"


⭐ Core Definition: Unbiased estimation of standard deviation

In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.

However, for statistical theory, it provides an exemplar problem in the context of estimation theory which is both simple to state and for which results cannot be obtained in closed form. It also provides an example where imposing the requirement for unbiased estimation might be seen as just adding inconvenience, with no real benefit.

↓ Menu
HINT:

In this Dossier

Unbiased estimation of standard deviation in the context of Unbiased estimator

All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful.

View the full Wikipedia page for Unbiased estimator
↑ Return to Menu