Ultrasonic testing in the context of Inspection


Ultrasonic testing in the context of Inspection

Ultrasonic testing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Ultrasonic testing in the context of "Inspection"


⭐ Core Definition: Ultrasonic testing

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse waves with centre frequencies ranging from 0.1-15MHz and occasionally up to 50MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion and erosion. Ultrasonic testing is extensively used to detect flaws in welds.

Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminum construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors.

↓ Menu
HINT:

πŸ‘‰ Ultrasonic testing in the context of Inspection

An inspection is, most generally, an organized examination or formal evaluation exercise. In engineering activities inspection involves the measurements, tests, and gauges applied to certain characteristics in regard to an object or activity. The results are usually compared to specified requirements and standards for determining whether the item or activity is in line with these targets, often with a Standard Inspection Procedure in place to ensure consistent checking. Inspections are usually non-destructive.

Inspections may be a visual inspection or involve sensing technologies such as ultrasonic testing, accomplished with a direct physical presence or remotely such as a remote visual inspection, and manually or automatically such as an automated optical inspection. Non-contact optical measurement and photogrammetry have become common NDT methods for inspection of manufactured components and design optimisation.

↓ Explore More Topics
In this Dossier

Ultrasonic testing in the context of Pigging

In pipeline transportation, pigging is the practice of using pipeline inspection gauges or gadgets, devices generally referred to as pigs or scrapers, to perform various maintenance operations. This is done without stopping the flow of the product in the pipeline.

These operations include but are not limited to cleaning and inspecting the pipeline. This is accomplished by inserting the pig into a "pig launcher" (or "launching station")β€”an oversized section in the pipeline, reducing to the normal diameter. The launching station is then closed and the pressure-driven flow of the product in the pipeline is used to push the pig along the pipe until it reaches the receiving trapβ€”the "pig catcher" (or "receiving station").

View the full Wikipedia page for Pigging
↑ Return to Menu

Ultrasonic testing in the context of Nondestructive testing

Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage.The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology.Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography.

Non-Destructive Testing (NDT/ NDT testing) Techniques or Methodologies allow the investigator to carry out examinations without invading the integrity of the engineering specimen under observation while providing an elaborate view of the surface and structural discontinuities and obstructions. The personnel carrying out these methodologies require specialized NDT Training as they involve handling delicate equipment and subjective interpretation of the NDT inspection/NDT testing results.

View the full Wikipedia page for Nondestructive testing
↑ Return to Menu