Ultrasonic in the context of Nondestructive testing


Ultrasonic in the context of Nondestructive testing

Ultrasonic Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Ultrasonic in the context of "Nondestructive testing"


⭐ Core Definition: Ultrasonic

Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.

Ultrasound is used in many different fields. Ultrasonic devices are used to detect objects and measure distances. Ultrasound imaging or sonography is often used in medicine. In the nondestructive testing of products and structures, ultrasound is used to detect invisible flaws. Industrially, ultrasound is used for cleaning, mixing, and accelerating chemical processes. Animals such as bats and porpoises use ultrasound for locating prey and obstacles.

↓ Menu
HINT:

In this Dossier

Ultrasonic in the context of Audio frequency

An audio frequency or audible frequency (AF) is a periodic vibration whose frequency is audible to the average human. The SI unit of frequency is the hertz (Hz). It is the property of sound that most determines pitch.

The generally accepted standard hearing range for humans is 20 to 20,000 Hz (20 kHz). In air at atmospheric pressure, these represent sound waves with wavelengths of 17 metres (56 ft) to 1.7 centimetres (0.67 in). Frequencies below 20 Hz are generally felt rather than heard, assuming the amplitude of the vibration is great enough. Sound waves that have frequencies below 20 Hz are called infrasonic and those above 20 kHz are called ultrasonic.

View the full Wikipedia page for Audio frequency
↑ Return to Menu

Ultrasonic in the context of Active acoustics

Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels.

"Sonar" can refer to one of two types of technology: passive sonar means listening for the sound made by vessels; active sonar means emitting pulses of sounds and listening for echoes. Sonar may be used as a means of acoustic location and of measurement of the echo characteristics of "targets" in the water. Acoustic location in air was used before the introduction of radar. Sonar may also be used for robot navigation, and sodar (an upward-looking in-air sonar) is used for atmospheric investigations. The term sonar is also used for the equipment used to generate and receive the sound. The acoustic frequencies used in sonar systems vary from very low (infrasonic) to extremely high (ultrasonic). The study of underwater sound is known as underwater acoustics or hydroacoustics.

View the full Wikipedia page for Active acoustics
↑ Return to Menu

Ultrasonic in the context of Supertweeter

A super tweeter is a speaker driver intended to produce ultra high frequencies in a multi-driver loudspeaker system. Its purpose is to recreate a more realistic sound field, often characterized as "airy-ness". Super tweeters are sometimes found in high fidelity speaker systems and sometimes even in home theater systems. They are used to supplement the sound of tweeters by reproducing frequencies which the tweeter may produce only with a narrow polar output, or perhaps with distortion.

A super tweeter is generally designed to respond well into ultrasonic frequencies over 20 kHz, the commonly accepted upper frequency limit of human hearing. Super tweeters have been designed for psychoacoustic testing, for extended-range digital audio such as high-resolution audio intended for audiophiles, for biologists performing research on animal response to sounds, and for ambient sound systems in zoos. Ribbon tweeters have been made that can reproduce 80 kHz and even 100 kHz.

View the full Wikipedia page for Supertweeter
↑ Return to Menu