Ultrashort pulse in the context of "Chirped pulse amplification"

Play Trivia Questions online!

or

Skip to study material about Ultrashort pulse in the context of "Chirped pulse amplification"




⭐ Core Definition: Ultrashort pulse

In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10 second) or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier.

They are characterized by a high peak intensity (or more correctly, irradiance) that usually leads to nonlinear interactions in various materials, including air. These processes are studied in the field of nonlinear optics.

↓ Menu

👉 Ultrashort pulse in the context of Chirped pulse amplification

Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.

CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in 1985, work for which they received the Nobel Prize in Physics in 2018.

↓ Explore More Topics
In this Dossier

Ultrashort pulse in the context of Laser

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow and the optical amplifier patented by Gordon Gould.

A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling uses such as optical communication, laser cutting, and lithography. It also allows a laser beam to stay narrow over great distances (collimation), used in laser pointers, lidar, and free-space optical communication. Lasers can also have high temporal coherence, which permits them to emit light with a very narrow frequency spectrum. Temporal coherence can also be used to produce ultrashort pulses of light with a broad spectrum but durations measured in attoseconds.

↑ Return to Menu

Ultrashort pulse in the context of Chirp

A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications (see chirp spread spectrum). This signal type is biologically inspired and occurs as a phenomenon due to dispersion (a non-linear dependence between frequency and the propagation speed of the wave components). It is usually compensated for by using a matched filter, which can be part of the propagation channel. Depending on the specific performance measure, however, there are better techniques both for radar and communication. Since it was used in radar and space, it has been adopted also for communication standards. For automotive radar applications, it is usually called linear frequency modulated waveform (LFMW).

In spread-spectrum usage, surface acoustic wave (SAW) devices are often used to generate and demodulate the chirped signals. In optics, ultrashort laser pulses also exhibit chirp, which, in optical transmission systems, interacts with the dispersion properties of the materials, increasing or decreasing total pulse dispersion as the signal propagates. The name is a reference to the chirping sound made by birds; see bird vocalization.

↑ Return to Menu

Ultrashort pulse in the context of Optical autocorrelation

In optics, various autocorrelation functions can be experimentally realized. The field autocorrelation may be used to calculate the spectrum of a source of light, while the intensity autocorrelation and the interferometric autocorrelation are commonly used to estimate the duration of ultrashort pulses produced by modelocked lasers. The laser pulse duration cannot be easily measured by optoelectronic methods, since the response time of photodiodes and oscilloscopes are at best of the order of 200 femtoseconds, yet laser pulses can be made as short as a few femtoseconds.

In the following examples, the autocorrelation signal is generated by the nonlinear process of second-harmonic generation (SHG). Other techniques based on two-photon absorption may also be used in autocorrelation measurements, as well as higher-order nonlinear optical processes such as third-harmonic generation, in which case the mathematical expressions of the signal will be slightly modified, but the basic interpretation of an autocorrelation trace remains the same. A detailed discussion on interferometric autocorrelation is given in several well-known textbooks.

↑ Return to Menu

Ultrashort pulse in the context of Femtosecond pulse shaping

In optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses.

↑ Return to Menu

Ultrashort pulse in the context of Nonlinear optics

Nonlinear optics (NLO) is a branch of optics that studies the case when optical properties of matter depend on the intensity of the input light. Nonlinear phenomena become relevant only when the input light is very intense. Typically, in order to observe nonlinear phenomena, an intensity of the electromagnetic field of light larger than 10 V/m (and thus comparable to the atomic electric field of ~10 V/m) is required. In this case, the polarization density P responds non-linearly to the electric field E of light. In order to obtain an electromagnetic field that is sufficiently intense, laser sources must be used. In nonlinear optics, the superposition principle no longer holds, and the polarization of the material is no longer linear in the electric field intensity. Instead, in the perturbative limit, it can be expressed by a polynomial sum of order n. Many different physical mechanisms can cause nonlinearities in the optical behaviour of a material, i.e. the motion of bound electrons, field-induced vibrational or orientational motions, optically-induced acoustic waves and thermal effects. The motion of bound electrons, in particular, has a very short response timescale, so it is of particular relevance in the context of ultrafast nonlinear optics. The simplest way to picture this behaviour in a semiclassical way is to use a phenomenological model: an anharmonic oscillator can model the forced oscillations of a bound electron inside the medium. In this picture, the binding interaction between the ion core and the electron is the Coulomb force and nonlinearities appear as changes in the elastic constant of the system (which behaves similarly to a mass attached to a spring) when the stretching or compression of the oscillator is large enough.

It must be pointed out that Maxwell's equations are linear in vacuum, so, nonlinear processes only occur in media. However, the theory of quantum electrodynamics (QED) predicts that, above the Schwinger limit, vacuum itself can behave in a nonlinear way.

↑ Return to Menu