Turbulent in the context of "Stridor"

Play Trivia Questions online!

or

Skip to study material about Turbulent in the context of "Stridor"




⭐ Core Definition: Turbulent

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between those layers.

Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent. Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of the fluid's viscosity. For this reason, turbulence is commonly realized in low viscosity fluids. In general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each other, consequently drag due to friction effects increases.

↓ Menu

👉 Turbulent in the context of Stridor

Stridor (from Latin stridere 'to grate, screech') is an extra-thoracic high-pitched breath sound resulting from turbulent air flow in the larynx or elsewhere in the upper respiratory tract. It is different from stertor, which is a snoring noise originating in the pharynx, and wheezing, which originates in the bronchi.

Stridor is a physical sign which is caused by a narrowed or obstructed airway. It can be inspiratory, expiratory or biphasic, although it is usually heard during inspiration. Inspiratory stridor often occurs in children with croup. It may be indicative of serious airway obstruction from severe conditions such as epiglottitis, a foreign body lodged in the airway, or a laryngeal tumor. Stridor should always command attention to establish its cause. Visualization of the airway by medical experts equipped to control the airway may be needed.

↓ Explore More Topics
In this Dossier

Turbulent in the context of Interstellar medium

The interstellar medium (ISM) is the matter and radiation that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic medium. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to electromagnetic radiation, and not as a collection of non-interacting particles.

The interstellar medium is composed of multiple phases distinguished by whether matter is ionic, atomic, or molecular, and the temperature and density of the matter. The interstellar medium is composed primarily of hydrogen, followed by helium with trace amounts of carbon, oxygen, and nitrogen. The thermal pressures of these phases are in rough equilibrium with one another. Magnetic fields and turbulent motions also provide pressure in the ISM, and are typically more important, dynamically, than the thermal pressure. In the interstellar medium, matter is primarily in molecular form and reaches number densities of 10 molecules per m (1 trillion molecules per m). In hot, diffuse regions, gas is highly ionized, and the density may be as low as 100 ions per m. Compare this with a number density of roughly 10 molecules per m for air at sea level, and 10 molecules per m (10 quadrillion molecules per m) for a laboratory high-vacuum chamber. Within our galaxy, by mass, 99% of the ISM is gas in any form, and 1% is dust. Of the gas in the ISM, by number 91% of atoms are hydrogen and 8.9% are helium, with 0.1% being atoms of elements heavier than hydrogen or helium, known as "metals" in astronomical parlance. By mass this amounts to 70% hydrogen, 28% helium, and 1.5% heavier elements. The hydrogen and helium are primarily a result of primordial nucleosynthesis, while the heavier elements in the ISM are mostly a result of enrichment (due to stellar nucleosynthesis) in the process of stellar evolution.

↑ Return to Menu

Turbulent in the context of Diffusion flame

In combustion, a diffusion flame is a flame in which the oxidizer and fuel are separated before burning. Contrary to its name, a diffusion flame involves both diffusion and convection processes. The name diffusion flame was first suggested by S.P. Burke and T.E.W. Schumann in 1928, to differentiate from premixed flame where fuel and oxidizer are premixed prior to burning. The diffusion flame is also referred to as nonpremixed flame. The burning rate is however still limited by the rate of diffusion. Diffusion flames tend to burn slower and to produce more soot than premixed flames because there may not be sufficient oxidizer for the reaction to go to completion, although there are some exceptions to the rule. The soot typically produced in a diffusion flame becomes incandescent from the heat of the flame and lends the flame its readily identifiable orange-yellow color. Diffusion flames tend to have a less-localized flame front than premixed flames.

The contexts for diffusion may vary somewhat. For instance, a candle uses the heat of the flame itself to vaporize its wax fuel and the oxidizer (oxygen) diffuses into the flame from the surrounding air, while a gaslight flame (or the safety flame of a Bunsen burner) uses fuel already in the form of a vapor.

↑ Return to Menu

Turbulent in the context of Flame speed

The flame speed is the measured rate of expansion of the flame front in a combustion reaction. Whereas flame velocity is generally used for a fuel, a related term is explosive velocity, which is the same relationship measured for an explosive. Combustion engineers differentiate between the laminar flame speed and turbulent flame speed. Flame speed is typically measured in m/s, cm/s, etc.

↑ Return to Menu

Turbulent in the context of Molecular tagging velocimetry

Molecular tagging velocimetry (MTV) is a specific form of flow velocimetry, a technique for determining the velocity of currents in fluids such as air and water. In its simplest form, a single "write" laser beam is shot once through the sample space. Along its path an optically induced chemical process is initiated, resulting in the creation of a new chemical species or in changing the internal energy state of an existing one, so that the molecules struck by the laser beam can be distinguished from the rest of the fluid. Such molecules are said to be "tagged".

This line of tagged molecules is now transported by the fluid flow. To obtain velocity information, images at two instances in time are obtained and analyzed (often by correlation of the image intensities) to determine the displacement. If the flow is three-dimensional or turbulent the line will not only be displaced, it will also be deformed.

↑ Return to Menu