Turbulence in the context of Turbosphere


Turbulence in the context of Turbosphere

Turbulence Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Turbulence in the context of "Turbosphere"


⭐ Core Definition: Turbulence

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between those layers.

Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent. Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of the fluid's viscosity. For this reason, turbulence is commonly realized in low viscosity fluids. In general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each other, consequently drag due to friction effects increases.

↓ Menu
HINT:

In this Dossier

Turbulence in the context of Vortex

In fluid dynamics, a vortex (pl.: vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids and may be observed in smoke rings, whirlpools in the wake of a boat, and in the winds surrounding a tropical cyclone, tornado, or dust devil.

Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterize vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis.

View the full Wikipedia page for Vortex
↑ Return to Menu

Turbulence in the context of Whistling

Whistling, without the use of an artificial whistle, is achieved by creating a small opening with one's lips, usually after applying moisture (licking one's lips or placing water upon them) and then blowing or sucking air through the space. The air is moderated by the lips, curled tongue, teeth or fingers (placed over the mouth or in various areas between pursed lips) to create turbulence, and the curled tongue acts as a resonant chamber to enhance the resulting sound by acting as a type of Helmholtz resonator. By moving the various parts of the lips, fingers, tongue, and epiglottis, one can then manipulate the types of whistles produced.

View the full Wikipedia page for Whistling
↑ Return to Menu

Turbulence in the context of Troposphere

The troposphere is the lowest layer of the atmosphere of Earth. Pronounced /ˈtrɒpəsfɪərˌ-p-/, the name comes from Ancient Greek τρόπος (trópos) 'turning, change' and -sphere. It contains 80% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km (11 mi; 59,000 ft) in the tropics; 11 km (6.8 mi; 36,000 ft) in the middle latitudes; and 6 km (3.7 mi; 20,000 ft) in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km (8.1 mi; 43,000 ft).

The term troposphere derives from the Greek words tropos (rotating) and sphaira (sphere) indicating that rotational turbulence mixes the layers of air and so determines the structure and the phenomena of the troposphere. The rotational friction of the troposphere against the planetary surface affects the flow of the air, and so forms the planetary boundary layer (PBL) that varies in height from hundreds of meters up to 2 km (1.2 mi; 6,600 ft). The measures of the PBL vary according to the latitude, the landform, and the time of day when the meteorological measurement is realized. Atop the troposphere is the tropopause, which is the functional atmospheric border that demarcates the troposphere from the stratosphere. As such, because the tropopause is an inversion layer in which air-temperature increases with altitude, the temperature of the tropopause remains constant. The layer has the largest concentration of nitrogen.

View the full Wikipedia page for Troposphere
↑ Return to Menu

Turbulence in the context of Astronomical seeing

In astronomy, seeing is the degradation of the image of an astronomical object due to turbulence in the atmosphere of Earth that may become visible as blurring, twinkling or variable distortion. The origin of this effect is rapidly changing variations of the optical refractive index along the light path from the object to the detector.Seeing is a major limitation to the angular resolution in astronomical observations with telescopes that would otherwise be limited through diffraction by the size of the telescope aperture.Today, many large scientific ground-based optical telescopes include adaptive optics to overcome seeing.

The strength of seeing is often characterized by the angular diameter of the long-exposure image of a star (seeing disk) or by the Fried parameter r0. The diameter of the seeing disk is the full width at half maximum of its optical intensity. An exposure time of several tens of milliseconds can be considered long in this context. The Fried parameter describes the size of an imaginary telescope aperture for which the diffraction limited angular resolution is equal to the resolution limited by seeing. Both the size of the seeing disc and the Fried parameter depend on the optical wavelength, but it is common to specify them for 500 nanometers.A seeing disk smaller than 0.4 arcseconds or a Fried parameter larger than 30 centimeters can be considered excellent seeing. The best conditions are typically found at high-altitude observatories on small islands, such as those at Mauna Kea or La Palma.

View the full Wikipedia page for Astronomical seeing
↑ Return to Menu

Turbulence in the context of Orion Nebula

The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It is one of the brightest nebulae and is visible to the naked eye in the night sky with an apparent magnitude of 4.0. It is 1,344 ± 20 light-years (412.1 ± 6.1 pc) away and is the closest region of massive star formation to Earth. M42 is estimated to be 25 light-years across (so its apparent size from Earth is approximately 1 degree). It has a mass of about 2,000 times that of the Sun. Older texts frequently refer to the Orion Nebula as the Great Nebula in Orion or the Great Orion Nebula.

The Orion Nebula is one of the most scrutinized and photographed objects in the night sky and is among the most intensely studied celestial features. The nebula has revealed much about the process of how stars and planetary systems are formed from collapsing clouds of gas and dust. Astronomers have directly observed protoplanetary disks and brown dwarfs within the nebula, intense and turbulent motions of the gas, and the photo-ionizing effects of massive nearby stars in the nebula.

View the full Wikipedia page for Orion Nebula
↑ Return to Menu

Turbulence in the context of Rapids

Rapids are sections of a river where the river bed has a relatively steep gradient, causing an increase in water velocity and turbulence. Flow, gradient, constriction, and obstacles are four factors that are needed for a rapid to be created.

View the full Wikipedia page for Rapids
↑ Return to Menu

Turbulence in the context of Wake (physics)

In fluid dynamics, a wake may either be:

  • the region of recirculating flow immediately behind a moving or stationary blunt body, caused by viscosity, which may be accompanied by flow separation and turbulence, or
  • the wave pattern on the water surface downstream of an object in a flow, or produced by a moving object (e.g. a ship), caused by density differences of the fluids above and below the free surface and gravity (or surface tension).
View the full Wikipedia page for Wake (physics)
↑ Return to Menu

Turbulence in the context of Swash

Swash, or forewash in geography, is a turbulent layer of water that washes up on the beach after an incoming wave has broken. The swash action can move beach materials up and down the beach, which results in the cross-shore sediment exchange. The time-scale of swash motion varies from seconds to minutes depending on the type of beach (see Figure 1 for beach types). Greater swash generally occurs on flatter beaches. The swash motion plays the primary role in the formation of morphological features and their changes in the swash zone. The swash action also plays an important role as one of the instantaneous processes in wider coastal morphodynamics.

There are two approaches that describe swash motions: (1) swash resulting from the collapse of high-frequency bores () on the beachface; and (2) swash characterised by standing, low-frequency () motions. Which type of swash motion prevails is dependent on the wave conditions and the beach morphology and this can be predicted by calculating the surf similarity parameter (Guza & Inman 1975):

View the full Wikipedia page for Swash
↑ Return to Menu

Turbulence in the context of Eddy (fluid dynamics)

In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.

An eddy is a movement of fluid that deviates from the general flow of the fluid. An example for an eddy is a vortex which produces such deviation. However, there are other types of eddies that are not simple vortices. For example, a Rossby wave is an eddy which is an undulation that is a deviation from mean flow, but does not have the local closed streamlines of a vortex.

View the full Wikipedia page for Eddy (fluid dynamics)
↑ Return to Menu

Turbulence in the context of Microscale meteorology

Microscale meteorology or micrometeorology is the study of short-lived atmospheric phenomena smaller than mesoscale, about 1 kilometre (0.6 mi) or less. These two branches of meteorology are sometimes grouped together as "mesoscale and microscale meteorology" (MMM) and together study all phenomena smaller than synoptic scale; that is they study features generally too small to be depicted on a standard weather map. These include small and generally fleeting cloud "puffs" and other small cloud features. Microscale meteorology controls the most important mixing and dilution processes in the atmosphere. Important topics in microscale meteorology include heat transfer and gas exchange between soil, vegetation, and/or surface water and the atmosphere caused by near-ground turbulence. Measuring these transport processes involves use of micrometeorological (or flux) towers. Variables often measured or derived include net radiation, sensible heat flux, latent heat flux, ground heat storage, and fluxes of trace gases important to the atmosphere, biosphere, and hydrosphere.

A micronet is an atmospheric and/or environmental observation network, composed of automated weather stations, used to monitor microscale phenomena. Micronets are sometimes considered a subtype of mesonet, and many micronets are a denser spatial resolution sub-network of a mesonet.

View the full Wikipedia page for Microscale meteorology
↑ Return to Menu

Turbulence in the context of Thermocline

A thermocline (also known as the thermal layer or the metalimnion in lakes) isa distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

Depending largely on season, latitude, and turbulent mixing by wind, thermoclines may be a semi-permanent feature of the body of water in which they occur, or they may form temporarily in response to phenomena such as the radiative heating/cooling of surface water during the day/night. Factors that affect the depth and thickness of a thermocline include seasonal weather variations, latitude, and local environmental conditions, such as tides and currents.

View the full Wikipedia page for Thermocline
↑ Return to Menu

Turbulence in the context of Atmospheric refraction

Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. This refraction is due to the velocity of light through air decreasing (the refractive index increases) with increased density. Atmospheric refraction near the ground produces mirages. Such refraction can also raise or lower, or stretch or shorten, the images of distant objects without involving mirages. Turbulent air can make distant objects appear to twinkle or shimmer. The term also applies to the refraction of sound. Atmospheric refraction is considered in measuring the position of both celestial and terrestrial objects.

Astronomical or celestial refraction causes astronomical objects to appear higher above the horizon than they actually are. Terrestrial refraction usually causes terrestrial objects to appear higher than they actually are, although in the afternoon when the air near the ground is heated, the rays can curve upward making objects appear lower than they actually are.

View the full Wikipedia page for Atmospheric refraction
↑ Return to Menu

Turbulence in the context of Whitewater

Whitewater forms in the context of rapids, in particular, when a river's gradient changes enough to generate so much turbulence that air is trapped within the water. This forms an unstable current that froths, making the water appear opaque and white.

The term "whitewater" also has a broader meaning, applying to any river or creek that has a significant number of rapids. The term is also used as an adjective describing boating on such rivers, such as whitewater canoeing or whitewater kayaking.

View the full Wikipedia page for Whitewater
↑ Return to Menu

Turbulence in the context of Sedimentation (water treatment)

The physical process of sedimentation (the act of depositing sediment) has applications in water treatment, whereby gravity acts to remove suspended solids from water. Solid particles entrained by the turbulence of moving water may be removed naturally by sedimentation in the still water of lakes and oceans. Settling basins are ponds constructed for the purpose of removing entrained solids by sedimentation. Clarifiers are tanks built with mechanical means for continuous removal of solids being deposited by sedimentation; however, clarification does not remove dissolved solids.

View the full Wikipedia page for Sedimentation (water treatment)
↑ Return to Menu

Turbulence in the context of Planetary boundary layer

In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately geostrophic (parallel to the isobars), while within the PBL the wind is affected by surface drag and turns across the isobars (see Ekman layer for more detail).

View the full Wikipedia page for Planetary boundary layer
↑ Return to Menu

Turbulence in the context of Subrahmanyan Chandrasekhar

Subrahmanyan Chandrasekhar (/ˌəndrəˈʃkər/ CHƏN-drə-SHAY-kər; Tamil: சுப்பிரமணியன் சந்திரசேகர், romanized: Cuppiramaṇiyaṉ Cantiracēkar; 19 October 1910 – 21 August 1995) was an Indian-American theoretical physicist who made significant contributions to the scientific knowledge about the structure of stars, stellar evolution and black holes. He also devoted some of his prime years to fluid dynamics, especially stability and turbulence, and made important contributions. He was awarded the 1983 Nobel Prize in Physics along with William A. Fowler for theoretical studies of the physical processes of importance to the structure and evolution of the stars. His mathematical treatment of stellar evolution yielded many of the current theoretical models of the later evolutionary stages of massive stars and black holes. Many concepts, institutions and inventions, including the Chandrasekhar limit and the Chandra X-Ray Observatory, are named after him.

Born in the late British Raj, Chandrasekhar worked on a wide variety of problems in physics during his lifetime, contributing to the contemporary understanding of stellar structure, white dwarfs, stellar dynamics, stochastic process, radiative transfer, the quantum theory of the hydrogen anion, hydrodynamic and hydromagnetic stability, turbulence, equilibrium and the stability of ellipsoidal figures of equilibrium, general relativity, mathematical theory of black holes and theory of colliding gravitational waves. At the University of Cambridge, he developed a theoretical model explaining the structure of white dwarf stars that took into account the relativistic variation of mass with the velocities of electrons that comprise their degenerate matter. He showed that the mass of a white dwarf could not exceed 1.44 times that of the Sun – the Chandrasekhar limit. Chandrasekhar revised the models of stellar dynamics first outlined by Jan Oort and others by considering the effects of fluctuating gravitational fields within the Milky Way on stars rotating about the galactic centre. His solution to this complex dynamical problem involved a set of twenty partial differential equations, describing a new quantity he termed "dynamical friction", which has the dual effects of decelerating the star and helping to stabilize clusters of stars. Chandrasekhar extended this analysis to the interstellar medium, showing that clouds of galactic gas and dust are distributed very unevenly.

View the full Wikipedia page for Subrahmanyan Chandrasekhar
↑ Return to Menu

Turbulence in the context of Aerodynamic

Aerodynamics (from Ancient Greek ἀήρ (aḗr) 'air' and δυναμική (dunamikḗ) 'dynamics') is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.

View the full Wikipedia page for Aerodynamic
↑ Return to Menu

Turbulence in the context of Spoon lure

In sport fishing, a spoon lure is a fishing lure usually made of lustrous metal and with an oblong, usually concave shape like the bowl of a spoon. The spoon lure is mainly used to attract predatory fish by specular reflection of light, as well as the turbulences it creates when moving in water.

The design of the spoon lure is simple: the oblong, concave blade shape of the spoon will cause it to wabble randomly when towed or sinking through water, creating sparkles of light reflection that resemble those of a swimming bait fish's scales when looking from afar. The spoon wabbling also stirs up turbulences that can entice the fish to stalk and strike it. Fish normally use their lateral line system to follow the vortices produced by fleeing prey, and the oscillating movements of the spoon lure can imitate these. Different color variations and materials can be added to the classic spoon lure may also help catch fish. Silver- or gold-plated or dyed finishes can give the lure a more vibrant or brilliant appearance. Most spoon lures have at least one hook at the end, which tethers the fish's mouth when the fish swallows the spoon.

View the full Wikipedia page for Spoon lure
↑ Return to Menu