Trial division in the context of "Prime number"

⭐ In the context of prime numbers, trial division is considered an efficient method for determining primality because it only requires checking divisibility by integers up to what value?

Ad spacer

⭐ Core Definition: Trial division

Trial division is the most laborious but easiest to understand of the integer factorization algorithms. The essential idea behind trial division tests to see if an integer n, the integer to be factored, can be divided by each number in turn that is less than or equal to the square root of n.

For example, to find the prime factors of n = 70, one can try to divide 70 by successive primes: first, 70 / 2 = 35; next, neither 2 nor 3 evenly divides 35; finally, 35 / 5 = 7, and 7 is itself prime. So 70 = 2 × 5 × 7.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Trial division in the context of Prime number

A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

The property of being prime is called primality. A simple but slow method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always produces the correct answer in polynomial time but is too slow to be practical. Particularly fast methods are available for numbers of special forms, such as Mersenne numbers. As of October 2024 the largest known prime number is a Mersenne prime with 41,024,320 decimal digits.

↓ Explore More Topics
In this Dossier

Trial division in the context of Sieve of Eratosthenes

In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.

↑ Return to Menu

Trial division in the context of Integer factorization

In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.

To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves testing whether each factor is prime each time a factor is found.

↑ Return to Menu

Trial division in the context of 2,147,483,647

The number 2147483647 is the eighth Mersenne prime, equal to 2 − 1. It is one of only four known double Mersenne primes.

The primality of this number was proven by Leonhard Euler, who reported the proof in a letter to Daniel Bernoulli written in 1772. Euler used trial division, improving on Pietro Cataldi's method, so that at most 372 divisions were needed. It thus improved upon the previous record-holding prime, 6,700,417 – also discovered by Euler – forty years earlier. The number 2,147,483,647 remained the largest known prime until 1867.

↑ Return to Menu