Transposons in the context of "Mobile genetic elements"

Play Trivia Questions online!

or

Skip to study material about Transposons in the context of "Mobile genetic elements"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Transposons in the context of Mobile genetic elements

Mobile genetic elements (MGEs), sometimes called selfish genetic elements, are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome are thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanisms can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

↓ Explore More Topics
In this Dossier

Transposons in the context of Non-coding DNA

Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules (e.g. transfer RNA, microRNA, piRNA, ribosomal RNA, and regulatory RNAs). Other functional regions of the non-coding DNA fraction include regulatory sequences that control gene expression; scaffold attachment regions; origins of DNA replication; centromeres; and telomeres. Some non-coding regions appear to be mostly nonfunctional, such as introns, pseudogenes, intergenic DNA, and fragments of transposons and viruses. Regions that are completely nonfunctional are called junk DNA.

↑ Return to Menu

Transposons in the context of Junk DNA

Junk DNA (non-functional DNA) is a DNA sequence that has no known biological function. Most organisms have some junk DNA in their genomes—mostly pseudogenes and fragments of transposons and viruses—but it is possible that some organisms have substantial amounts of junk DNA.

All protein-coding regions are generally considered to be functional elements in genomes. Additionally, non-protein coding regions such as genes for ribosomal RNA and transfer RNA, regulatory sequences, origins of replication, centromeres, telomeres, and scaffold attachment regions are considered as functional elements. (See Non-coding DNA for more information.)

↑ Return to Menu

Transposons in the context of Esther Lederberg

Esther Miriam Zimmer Lederberg (December 18, 1922 – November 11, 2006) was an American microbiologist and a pioneer of bacterial genetics. She discovered the bacterial virus lambda phage and the bacterial fertility factor F, devised the first implementation of replica plating, and furthered the understanding of the transfer of genes between bacteria by specialized transduction.

Lederberg also founded and directed the now-defunct Plasmid Reference Center at Stanford University, where she maintained, named, and distributed plasmids of many types, including those coding for antibiotic resistance, heavy metal resistance, virulence, conjugation, colicins, transposons, and other unknown factors.

↑ Return to Menu