Translation (geometry) in the context of Displacement (vector)


Translation (geometry) in the context of Displacement (vector)

Translation (geometry) Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Translation (geometry) in the context of "Displacement (vector)"


⭐ Core Definition: Translation (geometry)

In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.

↓ Menu
HINT:

In this Dossier

Translation (geometry) in the context of Projective geometry

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (projective space) and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice versa.

Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. Unlike in Euclidean geometry, the concept of an angle does not apply in projective geometry, because no measure of angles is invariant with respect to projective transformations, as is seen in perspective drawing from a changing perspective. One source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which parallel lines can be said to meet in a point at infinity, once the concept is translated into projective geometry's terms. Again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. See Projective plane for the basics of projective geometry in two dimensions.

View the full Wikipedia page for Projective geometry
↑ Return to Menu

Translation (geometry) in the context of Symmetry

Symmetry (from Ancient Greek συμμετρία (summetría) 'agreement in dimensions, due proportion, arrangement') in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article.

Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music.

View the full Wikipedia page for Symmetry
↑ Return to Menu

Translation (geometry) in the context of Degrees of freedom

In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.

In mathematics, this notion is formalized as the dimension of a manifold or an algebraic variety. When degrees of freedom is used instead of dimension, this usually means that the manifold or variety that models the system is only implicitly defined.See:

View the full Wikipedia page for Degrees of freedom
↑ Return to Menu

Translation (geometry) in the context of Position (geometry)

In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O, and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from O to P.In other words, it is the displacement or translation that maps the origin to P:

The term position vector is used mostly in the fields of differential geometry, mechanics and occasionally vector calculus.Frequently this is used in two-dimensional or three-dimensional space, but can be easily generalized to Euclidean spaces and affine spaces of any dimension.

View the full Wikipedia page for Position (geometry)
↑ Return to Menu

Translation (geometry) in the context of Direction (geometry)

In geometry, direction, also known as spatial direction or vector direction, is the common characteristic of all rays which coincide when translated to share a common endpoint; equivalently, it is the common characteristic of vectors (such as the relative position between a pair of points) which can be made equal by scaling (by some positive scalar multiplier).

Two vectors sharing the same direction are said to be codirectional or equidirectional. All codirectional line segments sharing the same size (length) are said to be equipollent. Two equipollent segments are not necessarily coincident; for example, a given direction can be evaluated at different starting positions, defining different unit directed line segments (as a bound vector instead of a free vector). Two colinear rays or oriented line segments (sharing the same supporting line) are not necessarily codirectional and vice versa.

View the full Wikipedia page for Direction (geometry)
↑ Return to Menu

Translation (geometry) in the context of Rolling

Rolling is a type of motion that combines rotation (commonly, of an axially symmetric object) and translation of that object with respect to a surface (either one or the other moves), such that, if ideal conditions exist, the two are in contact with each other without sliding.

Rolling where there is no sliding is referred to as pure rolling. By definition, there is no sliding when there is a frame of reference in which all points of contact on the rolling object have the same velocity as their counterparts on the surface on which the object rolls; in particular, for a frame of reference in which the rolling plane is at rest (see animation), the instantaneous velocity of all the points of contact (for instance, a generating line segment of a cylinder) of the rolling object is zero.

View the full Wikipedia page for Rolling
↑ Return to Menu

Translation (geometry) in the context of Glide symmetry

In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation.

Because the distances between points are not changed under glide reflection, it is a motion or isometry. When the context is the two-dimensional Euclidean plane, the hyperplane of reflection is a straight line called the glide line or glide axis. When the context is three-dimensional space, the hyperplane of reflection is a plane called the glide plane. The displacement vector of the translation is called the glide vector.

View the full Wikipedia page for Glide symmetry
↑ Return to Menu

Translation (geometry) in the context of Hinge

A hinge is a mechanical bearing that connects two solid objects, typically allowing only a limited angle of rotation between them. Two objects connected by an ideal hinge rotate relative to each other about a fixed axis of rotation, with all other translations or rotations prevented; thus a hinge has one degree of freedom. Hinges may be made of flexible material or moving components. In biology, many joints function as hinges, such as the elbow joint.

Hinges are frequently used on pivoting doors, but also are seen on folding ladders and many other flexible mechanisms such as automobile hoods (bonnets), and even large bridges.

View the full Wikipedia page for Hinge
↑ Return to Menu

Translation (geometry) in the context of Displacement (geometry)

In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position. Displacement is the shift in location when an object in motion changes from one position to another.For motion over a given interval of time, the displacement divided by the length of the time interval defines the average velocity (a vector), whose magnitude is the average speed (a scalar quantity).

View the full Wikipedia page for Displacement (geometry)
↑ Return to Menu

Translation (geometry) in the context of Whewell equation

The Whewell equation of a plane curve is an equation that relates the tangential angle (φ) with arc length (s), where the tangential angle is the angle between the tangent to the curve at some point and the x-axis, and the arc length is the distance along the curve from a fixed point. These quantities do not depend on the coordinate system used except for the choice of the direction of the x-axis, so this is an intrinsic equation of the curve, or, less precisely, the intrinsic equation. If one curve is obtained from another curve by translation then their Whewell equations will be the same.

When the relation is a function, so that tangential angle is given as a function of arc length, certain properties become easy to manipulate. In particular, the derivative of the tangential angle with respect to arc length is equal to the curvature. Thus, taking the derivative of the Whewell equation yields a Cesàro equation for the same curve.

View the full Wikipedia page for Whewell equation
↑ Return to Menu

Translation (geometry) in the context of Congruence (geometry)

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore, two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted.

View the full Wikipedia page for Congruence (geometry)
↑ Return to Menu

Translation (geometry) in the context of Edge-transitive

In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal (from Greek τόξον  'arc') or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

View the full Wikipedia page for Edge-transitive
↑ Return to Menu

Translation (geometry) in the context of Face-transitive

In geometry, a tessellation of dimension 2 (a plane tiling) or higher, or a polytope of dimension 3 (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. In other words, for any two faces A and B, there must be a symmetry of the entire figure by translations, rotations, and/or reflections that maps A onto B. For this reason, convex isohedral polyhedra are the shapes that will make fair dice.

Isohedral polyhedra are called isohedra. They can be described by their face configuration. An isohedron has an even number of faces.

View the full Wikipedia page for Face-transitive
↑ Return to Menu

Translation (geometry) in the context of Crystal structure

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

The smallest group of particles in a material that constitutes this repeating pattern is the unit cell of the structure. The unit cell completely reflects the symmetry and structure of the entire crystal, which is built up by repetitive translation of the unit cell along its principal axes. The translation vectors define the nodes of the Bravais lattice.

View the full Wikipedia page for Crystal structure
↑ Return to Menu

Translation (geometry) in the context of Transformation (function)

In mathematics, a transformation, transform, or self-map is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: XX.Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific affine transformations, such as rotations, reflections and translations.

View the full Wikipedia page for Transformation (function)
↑ Return to Menu

Translation (geometry) in the context of Motion (geometry)

In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion.

Motions can be divided into direct (also known as proper or rigid) and indirect (or improper) motions.Direct motions include translations and rotations, which preserve the orientation of a chiral shape.Indirect motions include reflections, glide reflections, and Improper rotations, that invert the orientation of a chiral shape.Some geometers define motion in such a way that only direct motions are motions.

View the full Wikipedia page for Motion (geometry)
↑ Return to Menu