Rotations in the context of "Hinge"

Play Trivia Questions online!

or

Skip to study material about Rotations in the context of "Hinge"

Ad spacer

⭐ Core Definition: Rotations

Rotation, rotational or rotary motion is the movement of an object that leaves at least one point unchanged. In 2 dimensions, a plane figure can rotate in either a clockwise or counterclockwise sense around a point called the center of rotation. In 3 dimensions, a solid figure rotates around an imaginary line called an axis of rotation.

The special case of a rotation with an internal axis passing through the body's own center of mass is known as a spin (or autorotation). In that case, the surface intersection of the internal spin axis can be called a pole; for example, Earth's rotation defines the geographical poles. A rotation around an axis completely external to the moving body is called a revolution (or orbit), e.g. Earth's orbit around the Sun. The ends of the external axis of revolution can be called the orbital poles.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Rotations in the context of Hinge

A hinge is a mechanical bearing that connects two solid objects, typically allowing only a limited angle of rotation between them. Two objects connected by an ideal hinge rotate relative to each other about a fixed axis of rotation, with all other translations or rotations prevented; thus a hinge has one degree of freedom. Hinges may be made of flexible material or moving components. In biology, many joints function as hinges, such as the elbow joint.

Hinges are frequently used on pivoting doors, but also are seen on folding ladders and many other flexible mechanisms such as automobile hoods (bonnets), and even large bridges.

↓ Explore More Topics
In this Dossier

Rotations in the context of Pseudovector

In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does not transform like a vector under certain discontinuous rigid transformations such as reflections. For example, the angular velocity of a rotating object is a pseudovector because, when the object is reflected in a mirror, the reflected image rotates in such a way so that its angular velocity "vector" is not the mirror image of the angular velocity "vector" of the original object; for true vectors (also known as polar vectors), the reflection "vector" and the original "vector" must be mirror images.

One example of a pseudovector is the normal to an oriented plane. An oriented plane can be defined by two non-parallel vectors, a and b, that span the plane. The vector a × b is a normal to the plane (there are two normals, one on each side – the right-hand rule will determine which), and is a pseudovector. This has consequences in computer graphics, where it has to be considered when transforming surface normals.In three dimensions, the curl of a polar vector field at a point and the cross product of two polar vectors are pseudovectors.

↑ Return to Menu