Torsion spring in the context of "Bending moment"

Play Trivia Questions online!

or

Skip to study material about Torsion spring in the context of "Bending moment"




⭐ Core Definition: Torsion spring

A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:

  • A torsion bar is a straight bar of metal or rubber that is subjected to twisting (shear stress) about its axis by torque applied at its ends.
  • A more delicate form used in sensitive instruments, called a torsion fiber consists of a fiber of silk, glass, or quartz under tension, that is twisted about its axis.
  • A helical torsion spring, is a metal rod or wire in the shape of a helix (coil) that is subjected to twisting about the axis of the coil by sideways forces (bending moments) applied to its ends, twisting the coil tighter.
  • Clocks use a spiral wound torsion spring (a form of helical torsion spring where the coils are around each other instead of piled up) sometimes called a "clock spring" or colloquially called a mainspring. Those types of torsion springs are also used for attic stairs, clutches, typewriters and other devices that need near constant torque for large angles or even multiple revolutions.
↓ Menu

In this Dossier

Torsion spring in the context of Ballista

The ballista (Latin, from Greek βαλλίστρα ballistra and that from βάλλω ballō, "throw"), plural ballistae or ballistas, sometimes called bolt thrower, was an ancient missile weapon that launched either bolts or stones at a distant target.

Developed from earlier Greek weapons, it relied upon different mechanics, using two levers with torsion springs instead of a tension prod (the bow part of a modern crossbow). The springs consisted of several loops of twisted skeins. Early versions projected heavy darts or spherical stone projectiles of various sizes for siege warfare. It developed into a smaller precision weapon, the scorpio, and possibly the polybolos.

↑ Return to Menu

Torsion spring in the context of Mainspring

A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.


Mainsprings appeared in the first spring-powered clocks, in 15th-century Europe. The mainspring replaced the weight hanging from a cord wrapped around a pulley, which was the power source used in all previous mechanical clocks.

↑ Return to Menu

Torsion spring in the context of Balance wheel

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel (called a "tick" or "beat") allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present.

Primitive balance wheels appeared in the first mechanical clocks in the 14th century, but its accuracy is due to the addition of the balance spring by Robert Hooke and Christiaan Huygens around 1657. Until the 1980s virtually every portable timekeeping device used some form of balance wheel. Since the 1980s quartz timekeeping technology has taken over most of these applications, and the main remaining use for balance wheels is in mechanical watches.

↑ Return to Menu

Torsion spring in the context of Spring (device)

A spring is a device consisting of an elastic but largely rigid material (typically metal) bent or molded into a form (especially a coil) that can return into shape after being compressed, extended or twisted. Springs can store energy when compressed, when extended, and/or when twisted. In everyday use, the term most often refers to coil springs, but there are many different spring designs. Modern springs are typically manufactured from spring steel. An example of a non-metallic spring is the bow, made traditionally of flexible yew wood, which when drawn stores energy to propel an arrow.

When a conventional spring, without stiffness variability features, is compressed or stretched from its resting position, it exerts an opposing force approximately proportional to its change in length (this approximation breaks down for larger deflections). The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve. An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in. A torsion spring is a spring that works by twisting; when it is twisted about its axis by an angle, it produces a torque proportional to the angle. A torsion spring's rate is in units of torque divided by angle, such as N·m/rad or ft·lbf/degree. The inverse of spring rate is compliance, that is: if a spring has a rate of 10 N/mm, it has a compliance of 0.1 mm/N. The stiffness (or rate) of springs in parallel is additive, as is the compliance of springs in series.

↑ Return to Menu

Torsion spring in the context of Clockwork

Clockwork refers to the inner workings of either mechanical devices called clocks and watches (where it is also called the movement) or other mechanisms that work similarly, using a series of gears driven by a spring or weight.

A clockwork mechanism is often powered by a clockwork motor consisting of a mainspring, a spiral torsion spring of metal ribbon. Energy is stored in the mainspring manually by winding it up, turning a key attached to a ratchet which twists the mainspring tighter. Then the force of the mainspring turns the clockwork gears, until the stored energy is used up. The adjectives wind-up and spring-powered refer to mainspring-powered clockwork devices, which include clocks and watches, kitchen timers, music boxes, and wind-up toys.

↑ Return to Menu