Topological graph in the context of Geometric graph theory


Topological graph in the context of Geometric graph theory

Topological graph Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Topological graph in the context of "Geometric graph theory"


HINT:

👉 Topological graph in the context of Geometric graph theory

Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs" (Pach 2013). Geometric graphs are also known as spatial networks.

↓ Explore More Topics
In this Dossier

Topological graph in the context of Skeleton (topology)

In mathematics, particularly in algebraic topology, the n-skeleton of a topological space X presented as a simplicial complex (resp. CW complex) refers to the subspace Xn that is the union of the simplices of X (resp. cells of X) of dimensions m ≤ n. In other words, given an inductive definition of a complex, the n-skeleton is obtained by stopping at the n-th step.

These subspaces increase with n. The 0-skeleton is a discrete space, and the 1-skeleton a topological graph. The skeletons of a space are used in obstruction theory, to construct spectral sequences by means of filtrations, and generally to make inductive arguments. They are particularly important when X has infinite dimension, in the sense that the Xn do not become constant as n → ∞.

View the full Wikipedia page for Skeleton (topology)
↑ Return to Menu