Thermosetting plastic in the context of Injection molding


Thermosetting plastic in the context of Injection molding

Thermosetting plastic Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Thermosetting plastic in the context of "Injection molding"


⭐ Core Definition: Thermosetting plastic

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent (catalyst, hardener). Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

The starting material for making thermosets is usually malleable or liquid prior to curing, and is often designed to be molded into the final shape. It may also be used as an adhesive. Once hardened, a thermoset cannot be melted for reshaping, in contrast to thermoplastic polymers which are commonly produced and distributed in the form of pellets, and shaped into the final product form by melting, pressing, or injection molding.

↓ Menu
HINT:

In this Dossier

Thermosetting plastic in the context of Synthetic resin

Synthetic resin is an industrially produced, typically viscous substance that converts into rigid polymers by the process of curing. They are formed by the reaction of dibasic organic acids and polyhydric alcohols.. In order to undergo curing, resins typically contain reactive groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

Synthetic resins are of several classes. Some are manufactured by esterification of organic compounds. Some are thermosetting plastics in which the term "resin" is loosely applied to the reactant(s), the product, or both. "Resin" may be applied to one or more monomers in a copolymer, the other being called a "hardener", as in epoxy resins. For thermosetting plastics that require only one monomer, the monomer compound is the "resin". For example, liquid methyl methacrylate is often called the "resin" or "casting resin" while in the liquid state, before it polymerizes and "sets". After setting, the resulting poly(methyl methacrylate) (PMMA) is often renamed "acrylic glass" or "acrylic". (Trade names include Plexiglas and Lucite).

View the full Wikipedia page for Synthetic resin
↑ Return to Menu

Thermosetting plastic in the context of Thermostability

In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative temperature.

Thermostable materials may be used industrially as fire retardants. A thermostable plastic, an uncommon and unconventional term, is likely to refer to a thermosetting plastic that cannot be reshaped when heated, than to a thermoplastic that can be remelted and recast.

View the full Wikipedia page for Thermostability
↑ Return to Menu

Thermosetting plastic in the context of Fibre-reinforced plastic

Fibre-reinforced plastic (FRP; also called fibre-reinforced polymer, or in American English fiber) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass (in fibreglass), carbon (in carbon-fibre-reinforced polymer), aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

FRPs are commonly used in the aerospace, automotive, marine, and construction industries. They are commonly found in ballistic armour and cylinders for self-contained breathing apparatuses.

View the full Wikipedia page for Fibre-reinforced plastic
↑ Return to Menu

Thermosetting plastic in the context of Polyester resin

Synthetic resin is an industrially produced, typically viscous substance that converts into rigid polymers by the process of curing. They are formed by the reaction of dibasic organic acids and polyhydric alcohols. In order to undergo curing, resins typically contain reactive groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

Synthetic resins are of several classes. Some are manufactured by esterification of organic compounds. Some are thermosetting plastics in which the term "resin" is loosely applied to the reactant(s), the product, or both. "Resin" may be applied to one or more monomers in a copolymer, the other being called a "hardener", as in epoxy resins. For thermosetting plastics that require only one monomer, the monomer compound is the "resin". For example, liquid methyl methacrylate is often called the "resin" or "casting resin" while in the liquid state, before it polymerizes and "sets". After setting, the resulting poly(methyl methacrylate) (PMMA) is often renamed "acrylic glass" or "acrylic". (Trade names include Plexiglas and Lucite).

View the full Wikipedia page for Polyester resin
↑ Return to Menu

Thermosetting plastic in the context of Melamine resin

Melamine resin or melamine formaldehyde (also shortened to melamine) is a resin with melamine rings terminated with multiple hydroxyl groups derived from formaldehyde. This thermosetting plastic material is made from melamine and formaldehyde. In its butylated form, it is dissolved in n-butanol and xylene. It is then used to cross-link with alkyd, epoxy, acrylic, and polyester resins, used in surface coatings. There are many types, varying from very slow to very fast curing.

View the full Wikipedia page for Melamine resin
↑ Return to Menu