Cross-link in the context of Thermosetting plastic


Cross-link in the context of Thermosetting plastic

Cross-link Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Cross-link in the context of "Thermosetting plastic"


⭐ Core Definition: Cross-link

In chemistry and biology, a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers (such as proteins).

In polymer chemistry "cross-linking" usually refers to the use of cross-links to promote a change in the polymers' physical properties.

↓ Menu
HINT:

In this Dossier

Cross-link in the context of Drying oil

A drying oil is an oil that hardens to a tough, solid film after a period of exposure to air, at room temperature. The oil hardens through a chemical reaction in which the components crosslink (and hence polymerize) by the action of oxygen (not through the evaporation of water or other solvents). Drying oils are a key component of oil paint and some varnishes. Some commonly used drying oils include linseed oil, tung oil, poppy seed oil, perilla oil, castor oil and walnut oil. The use of natural drying oils has declined over the past several decades, as they have been replaced by alkyd resins and other binders.

Since oxidation is the key to curing in these oils, those that are susceptible to chemical drying are often unsuitable for cooking, and are also highly susceptible to becoming rancid through autoxidation, the process by which fatty foods develop off-flavors. Rags, cloth, and paper saturated with drying oils may spontaneously combust (ignite) after a few hours as heat is released during the oxidation process.

View the full Wikipedia page for Drying oil
↑ Return to Menu

Cross-link in the context of Gel

A gel is a semi-solid that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute cross-linked system, which exhibits no flow when in the steady state, although the liquid phase may still diffuse through this system.

Gels are mostly liquid by mass, yet they behave like solids because of a three-dimensional cross-linked network within the liquid. It is the cross-linking within the fluid that gives a gel its structure (hardness) and contributes to the adhesive stick (tack). In this way, gels are a dispersion of molecules of a liquid within a solid medium. The word gel was coined by 19th-century Scottish chemist Thomas Graham by clipping from gelatine.

View the full Wikipedia page for Gel
↑ Return to Menu

Cross-link in the context of Curing (chemistry)

Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. Even if it is strongly associated with the production of thermosetting polymers, the term "curing" can be used for all the processes where a solid product is obtained from a liquid solution, such as with PVC plastisols.

View the full Wikipedia page for Curing (chemistry)
↑ Return to Menu

Cross-link in the context of Herbivore

A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat non-vascular autotrophs such as mosses, algae and lichens, but do not include those feeding on decomposed plant matters (i.e. detritivores) or macrofungi (i.e. fungivores).

As a result of their plant-based diet, herbivorous animals typically have mouth structures (jaws or mouthparts) well adapted to mechanically break down plant materials, and their digestive systems have special enzymes (e.g. amylase and cellulase) to digest polysaccharides. Grazing herbivores such as horses and cattles have wide flat-crowned teeth that are better adapted for grinding grass, tree bark and other tougher lignin-containing materials, and many of them evolved rumination or cecotropic behaviors to better extract nutrients from plants. A large percentage of herbivores also have mutualistic gut flora made up of bacteria and protozoans that help to degrade the cellulose in plants, whose heavily cross-linking polymer structure makes it far more difficult to digest than the protein- and fat-rich animal tissues that carnivores eat.

View the full Wikipedia page for Herbivore
↑ Return to Menu

Cross-link in the context of Vulcanized

Vulcanisation (American English: vulcanization) is a range of processes for hardening rubbers. The term originally referred exclusively to the treatment of natural rubber with sulfur and heat, which remains the most common practice. It has also grown to include the hardening of other (synthetic) rubbers via various means. Examples include silicone rubber via room temperature vulcanising and chloroprene rubber (neoprene) using metal oxides.

Vulcanisation can be defined as the curing of elastomers, with the terms 'vulcanisation' and 'curing' sometimes used interchangeably in this context. It works by forming cross-links between sections of the polymer chain which results in increased rigidity and durability, as well as other changes in the mechanical and electrical properties of the material. Vulcanisation, in common with the curing of other thermosetting polymers, is generally irreversible.

View the full Wikipedia page for Vulcanized
↑ Return to Menu

Cross-link in the context of Thermosetting polymer

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent (catalyst, hardener). Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

The starting material for making thermosets is usually malleable or liquid prior to curing, and is often designed to be molded into the final shape. It may also be used as an adhesive. Once hardened, a thermoset cannot be melted for reshaping, in contrast to thermoplastic polymers which are commonly produced and distributed in the form of pellets, and shaped into the final product form by melting, pressing, or injection molding.

View the full Wikipedia page for Thermosetting polymer
↑ Return to Menu

Cross-link in the context of Arabinoxylan

Arabinoxylan is a form of the hemicellulose xylan found in both the primary and secondary cell walls of plants which in addition to xylose contains substantial amounts of another pentose sugar, arabinose. The term arabinoxylan usually refers to feruloyl-arabinoxylan from grasses and other commelinids containing moieties of the phenolic ferulic acid that can undergo oxidative coupling (in the same way as lignin units) forming crosslinks between arabinoxylan chains and with lignin. Whilst arabinose has been found linked to xylan in non-commelinid plants, ferulic acid has not been reported on these and unlike feruloyl-arabinoxylan these arabinoxylans are not monophyletic. The remainder of this article refers to feruloyl-arabinoxylan from cell walls of grasses and other commelinid species.

View the full Wikipedia page for Arabinoxylan
↑ Return to Menu

Cross-link in the context of Photopolymer

A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.

A wide variety of technologically useful applications rely on photopolymers; for example, some enamels and varnishes depend on photopolymer formulation for proper hardening upon exposure to light. In some instances, an enamel can cure in a fraction of a second when exposed to light, as opposed to thermally cured enamels which can require half an hour or longer. Curable materials are widely used for medical, printing, and photoresist technologies.

View the full Wikipedia page for Photopolymer
↑ Return to Menu

Cross-link in the context of Sclerotin

Sclerotin is a component of the cuticle of various Arthropoda, most familiarly insects. It is formed by cross-linking members of particular classes of protein molecules, a biochemical process called sclerotization, a form of tanning in which quinones are enzymatically introduced into the cuticle, and react with terminal and lysine-related amino groups in the proteins to form strong links between the molecules. The resulting material greatly increases the rigidity of an insect's chitinous exoskeleton, which is otherwise fairly soft. It is particularly prominent in the thicker, armoured parts of insect and arachnid integument, such as in the biting mouthparts and sclerites of scorpions and beetles.

As it matures, freshly formed sclerotin becomes a hard, horn-like substance with a range of yellow-brown colors. As animals adapted to life on land, increasingly diverse needs for organic stiffening components arose (as opposed to mineral stiffening components such as calcium carbonates and phosphates). Among the invertebrates, this need was met largely by the development of sclerotins and other cross-linked proteins that allowed insects to adapt to existence on the land and later to develop wings.

View the full Wikipedia page for Sclerotin
↑ Return to Menu

Cross-link in the context of Peptidoglycan

Peptidoglycan, murein or mucopeptide is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

The peptidoglycan layer is substantially thicker in gram-positive bacteria (20 to 80 nanometers) than in gram-negative bacteria (7 to 8 nanometers). Depending on pH growth conditions, the peptidoglycan forms around 40 to 90% of the cell wall's dry weight of gram-positive bacteria but only around 10% of gram-negative strains. Thus, presence of high levels of peptidoglycan is the primary determinant of the characterisation of bacteria as gram-positive. In gram-positive strains, it is important in attachment roles and serotyping purposes. For both gram-positive and gram-negative bacteria, particles of approximately 2 nm can pass through the peptidoglycan.

View the full Wikipedia page for Peptidoglycan
↑ Return to Menu

Cross-link in the context of Vulcanized rubber

Vulcanization (British English: vulcanisation) is a range of processes for hardening rubbers. The term originally referred exclusively to the treatment of natural rubber with sulfur and heat, which remains the most common practice. It has also grown to include the hardening of other (synthetic) rubbers via various means. Examples include silicone rubber via room temperature vulcanising and chloroprene rubber (neoprene) using metal oxides.

Vulcanization can be defined as the curing of elastomers, with the terms 'vulcanization' and 'curing' sometimes used interchangeably in this context. It works by forming cross-links between sections of the polymer chain which results in increased rigidity and durability, as well as other changes in the mechanical and electrical properties of the material. Vulcanization, in common with the curing of other thermosetting polymers, is generally irreversible.

View the full Wikipedia page for Vulcanized rubber
↑ Return to Menu