Thermodynamic operation in the context of Equilibrium thermodynamics


Thermodynamic operation in the context of Equilibrium thermodynamics

Thermodynamic operation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Thermodynamic operation in the context of "Equilibrium thermodynamics"


⭐ Core Definition: Thermodynamic operation

A thermodynamic operation refers to any external manipulation impacting a thermodynamic system. This can involve alterations to the system's boundary with its surroundings or changes in the values of variables within those surroundings that interact with the system's boundary, facilitating the transfer of extensive quantities associated with those variables. In thermodynamics, it is assumed that such operations occur without consideration of relevant microscopic details.

A thermodynamic operation requires a contribution from an independent external agency, that does not come from the passive properties of the systems. Perhaps the first expression of the distinction between a thermodynamic operation and a thermodynamic process is in Kelvin's statement of the second law of thermodynamics: "It is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the surrounding objects." A sequence of events that occurred other than "by means of inanimate material agency" would entail an action by an animate agency, or at least an independent external agency. Such an agency could impose some thermodynamic operations. For example, those operations might create a heat pump, which of course would comply with the second law. A Maxwell's demon conducts an extremely idealized and naturally unrealizable kind of thermodynamic operation.

↓ Menu
HINT:

👉 Thermodynamic operation in the context of Equilibrium thermodynamics

Equilibrium thermodynamics is the systematic study of transformations of matter and energy in systems in terms of a concept called thermodynamic equilibrium. The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as the system settles into its final equilibrium state, work is extracted.

In an equilibrium state the potentials, or driving forces, within the system, are in exact balance. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial state of thermodynamic equilibrium, subject to accurately specified constraints, to calculate, when the constraints are changed by an externally imposed intervention, what the state of the system will be once it has reached a new equilibrium. An equilibrium state is mathematically ascertained by seeking the extrema of a thermodynamic potential function, whose nature depends on the constraints imposed on the system. For example, a chemical reaction at constant temperature and pressure will reach equilibrium at a minimum of its components' Gibbs free energy and a maximum of their entropy.

↓ Explore More Topics
In this Dossier

Thermodynamic operation in the context of Thermodynamic equilibrium

Thermodynamic equilibrium is a notion of thermodynamics with axiomatic status referring to an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In thermodynamic equilibrium, there are no net macroscopic flows of mass nor of energy within a system or between systems. In a system that is in its own state of internal thermodynamic equilibrium, not only is there an absence of macroscopic change, but there is an "absence of any tendency toward change on a macroscopic scale."

Systems in mutual thermodynamic equilibrium are simultaneously in mutual thermal, mechanical, chemical, and radiative equilibria. Systems can be in one kind of mutual equilibrium, while not in others. In thermodynamic equilibrium, all kinds of equilibrium hold at once and indefinitely, unless disturbed by a thermodynamic operation. In a macroscopic equilibrium, perfectly or almost perfectly balanced microscopic exchanges occur; this is the physical explanation of the notion of macroscopic equilibrium.

View the full Wikipedia page for Thermodynamic equilibrium
↑ Return to Menu