Thermocline in the context of Internal wave


Thermocline in the context of Internal wave

Thermocline Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Thermocline in the context of "Internal wave"


⭐ Core Definition: Thermocline

A thermocline (also known as the thermal layer or the metalimnion in lakes) isa distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

Depending largely on season, latitude, and turbulent mixing by wind, thermoclines may be a semi-permanent feature of the body of water in which they occur, or they may form temporarily in response to phenomena such as the radiative heating/cooling of surface water during the day/night. Factors that affect the depth and thickness of a thermocline include seasonal weather variations, latitude, and local environmental conditions, such as tides and currents.

↓ Menu
HINT:

👉 Thermocline in the context of Internal wave

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance (as in the case of the thermocline in lakes and oceans or an atmospheric inversion), the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

Internal waves, also called internal gravity waves, go by many other names depending upon the fluid stratification, generation mechanism, amplitude, and influence of external forces. If propagating horizontally along an interface where the density rapidly decreases with height, they are specifically called interfacial (internal) waves. If the interfacial waves are large amplitude they are called internal solitary waves or internal solitons. If moving vertically through the atmosphere where substantial changes in air density influences their dynamics, they are called anelastic (internal) waves. If generated by flow over topography, they are called Lee waves or mountain waves. If the mountain waves break aloft, they can result in strong warm winds at the ground known as Chinook winds (in North America) or Foehn winds (in Europe). If generated in the ocean by tidal flow over submarine ridges or the continental shelf, they are called internal tides. If they evolve slowly compared to the Earth's rotational frequency so that their dynamics are influenced by the Coriolis effect, they are called inertia gravity waves or, simply, inertial waves. Internal waves are usually distinguished from Rossby waves, which are influenced by the change of Coriolis frequency with latitude.

↓ Explore More Topics
In this Dossier

Thermocline in the context of Ocean temperature

The ocean temperature plays a crucial role in the global climate system, ocean currents and for marine habitats. It varies depending on depth, geographical location and season. Not only does the temperature differ in seawater, so does the salinity. Warm surface water is generally saltier than the cooler deep or polar waters. In polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a uniform temperature of around 0-3 °C. The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F). Near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F).

There is a continuous large-scale circulation of water in the oceans. One part of it is the thermohaline circulation (THC). It is driven by global density gradients created by surface heat and freshwater fluxes. Warm surface currents cool as they move away from the tropics. This happens as the water becomes denser and sinks. Changes in temperature and density move the cold water back towards the equator as a deep sea current. Then it eventually wells up again towards the surface.

View the full Wikipedia page for Ocean temperature
↑ Return to Menu

Thermocline in the context of Ocean stratification

Ocean stratification is the natural separation of an ocean's water into horizontal layers by density. This is generally stable stratification, because warm water floats on top of cold water, and heating is mostly from the sun, which reinforces that arrangement. Stratification is reduced by wind-forced mechanical mixing, but reinforced by convection (warm water rising, cold water sinking). Stratification occurs in all ocean basins and also in other water bodies. Stratified layers are a barrier to the mixing of water, which impacts the exchange of heat, carbon, oxygen and other nutrients. The surface mixed layer is the uppermost layer in the ocean and is well mixed by mechanical (wind) and thermal (convection) effects. Climate change is causing the upper ocean stratification to increase.

Due to upwelling and downwelling, which are both wind-driven, mixing of different layers can occur through the rise of cold nutrient-rich and sinking of warm water, respectively. Generally, layers are based on water density: heavier, and hence denser, water is below the lighter water, representing a stable stratification. For example, the pycnocline is the layer in the ocean where the change in density is largest compared to that of other layers in the ocean. The thickness of the thermocline is not constant everywhere and depends on a variety of variables.

View the full Wikipedia page for Ocean stratification
↑ Return to Menu

Thermocline in the context of Stratification (water)

Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. Wind-driven upwelling and downwelling of open water can induce mixing of different layers through the stratification, and force the rise of denser cold, nutrient-rich, or saline water and the sinking of lighter warm or fresher water, respectively. Layers are based on water density: denser water remains below less dense water in stable stratification in the absence of forced mixing.

Stratification occurs in several kinds of water bodies, such as oceans, lakes, estuaries, flooded caves, aquifers and some rivers.

View the full Wikipedia page for Stratification (water)
↑ Return to Menu

Thermocline in the context of Ocean dynamics

Ocean dynamics define and describe the flow of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean.

Ocean dynamics has traditionally been investigated by sampling from instruments in situ.

View the full Wikipedia page for Ocean dynamics
↑ Return to Menu

Thermocline in the context of Lake stratification

Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the epilimnion, comprising the top warm layer; the thermocline (or metalimnion), the middle layer, whose depth may change throughout the day; and the colder hypolimnion, extending to the floor of the lake.

Every lake has a set mixing regime that is influenced by lake morphometry and environmental conditions. However, changes to human influences in the form of land use change, increases in temperature, and changes to weather patterns have been shown to alter the timing and intensity of stratification in lakes around the globe. Rising air temperatures have the same effect on lake bodies as a physical shift in geographic location, with tropical zones being particularly sensitive. These changes can further alter the fish, zooplankton, and phytoplankton community composition, in addition to creating gradients that alter the availability of dissolved oxygen and nutrients.

View the full Wikipedia page for Lake stratification
↑ Return to Menu

Thermocline in the context of Epilimnion

The epilimnion or surface layer is the top-most layer in a thermally stratified lake.

The epilimnion is the layer that is most affected by sunlight, its thermal energy heating the surface, thereby making it warmer and less dense. As a result, the epilimnion sits above the deeper metalimnion and hypolimnion, which are colder and denser. Additionally, the epilimnion typically has a higher pH and higher dissolved oxygen concentration than the hypolimnion.

View the full Wikipedia page for Epilimnion
↑ Return to Menu

Thermocline in the context of Hypolimnion

The hypolimnion or under lake is the dense, bottom layer of water in a thermally-stratified lake. The word "hypolimnion" is derived from Ancient Greek: λιμνίον, romanizedlimníon, lit.'lake'. It is the layer that lies below the thermocline.

Typically the hypolimnion is the coldest layer of a lake in summer, and the warmest layer during winter. In deep, temperate lakes, the bottom-most waters of the hypolimnion are typically close to 4 °C throughout the year. The hypolimnion may be much warmer in lakes at warmer latitudes. Being at depth, it is isolated from surface wind-mixing during summer, and usually receives insufficient irradiance (light) for photosynthesis to occur.

View the full Wikipedia page for Hypolimnion
↑ Return to Menu

Thermocline in the context of Rossby waves

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby in the Earth's atmosphere in 1939. They are observed in the atmospheres and oceans of Earth and other planets, owing to the rotation of Earth or of the planet involved. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream (especially around the polar vortices). Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.

View the full Wikipedia page for Rossby waves
↑ Return to Menu

Thermocline in the context of Cromwell Current

The Cromwell Current (also called Pacific Equatorial Undercurrent or just Equatorial Undercurrent) is an eastward-flowing subsurface current that extends the length of the equator in the Pacific Ocean.

The Cromwell Current was discovered in 1952 by Townsend Cromwell, a researcher with the Honolulu Laboratory of the Fish and Wildlife Service (later the United States Fish and Wildlife Service). It is 250 miles (220 nmi; 400 km) wide and flows to the east. It is hidden 300 feet (91 m) under the surface of the Pacific Ocean at the equator and is relatively shallow compared to other ocean currents being only 100 feet (30 m) from top to base. It is a powerful current with top velocities of up to 1.5 m/s (2.9 knots; 3.4 mph). The current's core coincides with the thermocline and its distance from the parallel Equatorial Counter Current is approximately 300 kilometres (190 mi; 160 nmi). It has 1,000 times the volume of the Mississippi River and its length is 3,500 miles (3,000 nmi; 5,600 km).

View the full Wikipedia page for Cromwell Current
↑ Return to Menu

Thermocline in the context of Profundal

The profundal zone is the deep zone of a lake, located below the range of effective light penetration. This is typically below the thermocline, the vertical zone in the water through which temperature drops rapidly. The temperature difference may be large enough to hamper mixing with the littoral zone in some seasons which causes a decrease in oxygen concentrations. The profundal is often defined, as the deepest, vegetation-free, and muddy zone of the lacustrine benthal. The profundal zone is often part of the aphotic zone. Sediment in the profundal zone primarily comprises silt and mud.

View the full Wikipedia page for Profundal
↑ Return to Menu