Thermal mass in the context of "Earth sheltering"

Play Trivia Questions online!

or

Skip to study material about Thermal mass in the context of "Earth sheltering"




โญ Core Definition: Thermal mass

In building design, thermal mass is a property of the matter of a building that requires a flow of heat in order for it to change temperature.

Not all writers agree on what physical property of matter "thermal mass" describes. Most writers use it as a synonym for heat capacity, the ability of a body to store thermal energy. It is typically referred to by the symbol Cth, and its SI unit is J/K or J/ยฐC (which are equivalent).

โ†“ Menu

๐Ÿ‘‰ Thermal mass in the context of Earth sheltering

An earth shelter, also called an earth house, earth-bermed house, earth-sheltered house, earth-covered house, or underground house, is a structure (usually a house) with earth (soil) against the walls and/or on the roof, or that is entirely buried underground.

Earth acts as thermal mass, making it easier to maintain a steady indoor air temperature and therefore reduces energy costs for heating or cooling.

โ†“ Explore More Topics
In this Dossier

Thermal mass in the context of Heat capacity

Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat that must be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). It quantifies the ability of a material or system to store thermal energy.

Heat capacity is an extensive property. The corresponding intensive property is the specific heat capacity, found by dividing the heat capacity of an object by its mass. Dividing the heat capacity by the amount of substance in moles yields its molar heat capacity. The volumetric heat capacity measures the heat capacity per volume. In architecture and civil engineering, the heat capacity of a building is often referred to as its thermal mass.

โ†‘ Return to Menu

Thermal mass in the context of Solar energy

Solar energy is the radiant energy from the Sun's light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include designing a building for better daylighting, selecting materials with favorable thermal mass or light-dispersing properties, and organizing spaces that naturally circulate air.

In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible, and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming .... these advantages are global".

โ†‘ Return to Menu

Thermal mass in the context of Passive solar building design

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

The key to designing a passive solar building is to best take advantage of the local climate performing an accurate site analysis. Elements to be considered include window placement and size, and glazing type, thermal insulation, thermal mass, and shading. Passive solar design techniques can be applied most easily to new buildings, but existing buildings can be adapted or "retrofitted".

โ†‘ Return to Menu